# POLLUTION CONTROL BOARD

# NOTICE OF PROPOSED AMENDMENTS

# 1) <u>Heading of the Part</u>: Tiered Approach to Corrective Action Objectives

## 2) <u>Code Citation</u>: 35 Ill. Adm. Code 742

| 3) | Section Numbers: | Proposed Action: |
|----|------------------|------------------|
|    | 742.105          | Amend            |
|    | 742.110          | Amend            |
|    | 742.115          | Amend            |
| 22 | 742.200          | Amend            |
|    | 742.210          | Amend            |
|    | 742.220          | Amend            |
|    | 742.222          | New              |
|    | 742.225          | Amend            |
|    | 742.227          | New              |
|    | 742.305          | Amend            |
|    | 742.310          | Amend            |
|    | 742.312          | New              |
|    | 742.405          | Amend            |
|    | 742.500          | Amend            |
|    | 742.505          | Amend            |
|    | 742.510          | Amend            |
|    | 742.515          | New              |
|    | 742.600          | Amend            |
|    | 742.605          | Amend            |
|    | 742.610          | Amend            |
|    | 742.700          | Amend            |
|    | 742.705          | Amend            |
|    | 742.710          | Amend            |
|    | 742.712          | New              |
|    | 742.715          | Amend            |
|    | 742.717          | New              |
|    | 742.805          | Amend            |
|    | 742.810          | Amend            |
|    | 742.812          | New              |
|    | 742.900          | Amend            |
|    | 742.920          | Amend            |
|    | 742.925          | Amend            |
|    | 742.935          | New              |
|    | 742.1000         | Amend            |
|    | 742.1010         | Amend            |



MAY 1 6 2012 STATE OF ILLINOIS Pollution Control Board

<u>1</u> 12

#### POLLUTION CONTROL BOARD

## NOTICE OF PROPOSED AMENDMENTS

| 742.1015       | Amend |
|----------------|-------|
| 742.1105       | Amend |
| 742.1200       | New   |
| 742.1205       | New   |
| 742.1210       | New   |
| 742.APPENDIX A |       |
| TABLE A        | Amend |
| TABLE E        | Amend |
| TABLE F        | Amend |
| TABLE J        | New   |
| TABLE K        | New   |
| 742.APPENDIX B |       |
| TABLE G        | New   |
| TABLE H        | New   |
| TABLE I        | New   |
| 742.APPENDIX C |       |
| TABLE A        | Amend |
| TABLE B        | Amend |
| TABLE E        | Amend |
| TABLE F        | Amend |
| TABLE L        | New   |
| TABLE M        | New   |
| 742.APPENDIX F | Amend |

- 4) <u>Statutory Authority</u>: Authorized by Section 27 of the Environmental Protection Act [415 ILCS 5/27]
- 5) <u>A Complete Description of the Subjects and Issues Involved</u>: On April 19, 2012, the Illinois Pollution Control Board (Board) adopted an opinion and order proposing first-notice amendments to the Tiered Approach to Corrective Action Objectives (TACO) rules (35 Ill. Adm. Code 742). The rulemaking is docketed Tiered Approach to Corrective Action Objectives (TACO) (Indoor Inhalation): Amendments to 35 Ill. Adm. Code 742, R11-9. Since 1997, the TACO rules have provided procedures for developing remediation objectives based upon risks posed to human health by environmental conditions at a variety of sites. TACO is used at sites being remediated under any one of several regulatory programs: Leaking Underground Storage Tank (UST) Program; Site Remediation Program (SRP); and Resource Conservation and Recovery Act (RCRA) Part B Permits and Closure Plans.

The first-notice amendments include the addition of a new exposure route under TACO:

#### POLLUTION CONTROL BOARD

#### NOTICE OF PROPOSED AMENDMENTS

the indoor inhalation exposure route. To protect building occupants, this exposure route addresses the potential for vapors to migrate into buildings from underlying volatile chemicals in soil or groundwater, a process commonly known as "vapor intrusion" or "VI." The Board also proposed adding 13 chemicals to the TACO tables based upon the Board's pending rulemaking on groundwater quality standards, Proposed Amendments to Groundwater Quality Standards (35 III. Adm. Code 620), R08-18. Further, the firstnotice amendments to TACO update physical and chemical parameters and revise toxicity values in accordance with the new United States Environmental Protection Agency hierarchy for selecting human health toxicity values.

The R11-9 rulemaking was initiated when the Illinois Environmental Protection Agency (IEPA) filed a proposal with the Board on November 9, 2010, under Section 27 of the Environmental Protection Act [415 ILCS 5/27]. After conducting two public hearings and receiving public comments, the Board has adopted, for first notice, the amendments proposed or agreed to by IEPA, with minor clarifying changes. In addition, the Board proposed requiring that IEPA be notified if an indoor inhalation building control technology at a school is rendered inoperable. The Board also proposed that the entire set of amendments would become effective on a date certain 60 days after their final adoption. For further information, please refer to the Board's first-notice opinion and order of April 19, 2012, which is available through the Clerk's Office On-Line (COOL) on the Board's Web site at www.ipcb.state.il.us.

6) <u>Published studies or reports and sources of underlying data used to compose this</u> rulemaking:

Abreu, L.D.V., Ettinger, R., McAlary, T. 2009. "Simulated Soil Vapor Intrusion Attenuation Factors Including Biodegradation for Petroleum Hydrocarbons." Ground Water Monitoring and Remediation 29(1):105-117.

Agency for Toxic Substances and Disease Registry. (Jan. 2004). Health Consultation: Active Soil Gas Data Review, Chillum Perc site, Chillum, Prince Georges County, Maryland. http://www.atsdr.cdc.gov/hac/PHA/chillumperc/cps p1.html

Agency for Toxic Substances and Disease Registry. (November 2007). Minimal Risk Levels (MRLs).

Agency for Toxic Substances and Disease Registry. (December 2006). Minimal Risk Levels (MRLs).

American Petroleum Institute (Nov. 2005). A Practical Strategy for Assessing the

#### POLLUTION CONTROL BOARD

## NOTICE OF PROPOSED AMENDMENTS

Subsurface Vapor-to-Indoor-Air Migration Pathway at Petroleum Hydrocarbon Sites. API Publication 4741. http://www.itrcweb.org/Documents/VI-1.pdf

Bibler, G. & Mason, E. (Nov. 2005). Scrutiny of Indoor Air Pathway Affects Standards for Investigation and Cleanup. Daily Environment Report, 11-10-05. http://net2.gph.com/~/media/64E898D7D8F042379F78727C1EC07A43.ashx

California EPA, Department of Toxic Substances Control (Feb. 2005). Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air. http://www.dtsc.ca.gov/assessingrisk/upload/herd\_pol\_eval\_subsurface\_vapor\_intrusion\_interim\_final.pdf

California EPA, Department of Toxic Substances Control (Jan. 2003). Advisory on Active Soil Gas Investigations.

 $http://www.dtsc.ca.gov/lawsregspolicies/policies/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_actives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upload/SMBR\_ADV\_ACtives/SiteCleanup/upl$ 

California EPA, Department of Toxic Substances Control. 2010. Advisory- Active Soil Gas Investigation. http://www.dtsc.ca.gov/SiteCleanup/upload/SAG\_Review\_Drft.pdf

California EPA. Office of Environmental Health Hazard Assessment. Toxicity Criteria Database. http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Colorado Department of Public Health and Environment (Sept. 2004). Draft Indoor Air Guidance. http://www.cdphe.state.co.us/HM/indoorair.pdf

Davis, G.B., Patterson, B.M., Trefry, M.G. 2009. "Evidence for Instantaneous Oxygen-Limited Biodegradation of Petroleum Hydrocarbon Vapors in the Subsurface." Ground Water Monitoring and Remediation 29(1):126-137.

Davis, R.V. 2009. "Update on Recent Studies and Proposed Screening Criteria for the Vapor-Intrusion Pathway." LUSTLine Bulletin 61:11-14.

Dawson, H.E., McAlary, T. 2009. "A Compilation of Statistics for VOCs from Post 1990 Indoor Air Concentration Studies in North American Residences Unaffected by Subsurface Vapor Intrusion." Ground Water Monitoring and Remediation 29(1):60-69.

Department of the Army, U.S. Army Corps of Engineers (Sept. 1993). Indoor Radon Prevention and Mitigation. Technical Letter No. 1110-3-438. http://www.wbdg.org/ccb/DOD/UFC/ufc\_3\_490\_04a.pdf

#### POLLUTION CONTROL BOARD

## NOTICE OF PROPOSED AMENDMENTS

Fetter, C.W. (1994). Applied Hydrogeology, 3rd Edition. Available at the Illinois EPA library, Call Number: 551.48 FETT 1994

Fitzpatrick, N.A., Fitzgerald, J.J. 2002. "An Evaluation of Vapor Intrusion Into Buildings Through a Study of Field Data." Soil and Sediment Contamination 11(4):603-623.

Folkes, D. (Dec. 2002). Design, Effectiveness, and Reliability of Sub-Slab Depressurization Systems for Mitigation of Chlorinated Solvent Vapor Intrusion. EnviroGroup Limited. Presented at the U.S. EPA Seminar on Indoor Air Vapor Intrusion, San Francisco.

http://www.envirogroup.com/publications/folkes\_epa\_seminar.pdf

Folkes, D., Wertz, W., Kurtz, J., Kuehster, T. 2009. "Observed Spatial and Temporal Distributions of CVOCs at Colorado and New York Vapor Intrusion Sites." Ground Water Monitoring and Remediation 29(1):70-80.

Geoprobe Systems. 2006. Direct Push Installation of Devices for Active Soil Gas Sampling and Monitoring. Technical Bulletin No. MK3098.

Grimsrud, D.T., Sherman, M.H., Sonderegger, R.C. 1982. "Calculating Infiltration: Implications for a Construction Quality Standard." Thermal Performance of the Exterior Envelopes of Buildings II; Proceedings of the ASHRAE/DOE Conference, Dec. 6-9 SP38:422-452.

Hartman, B. 2002. How to Collect Reliable Soil Gas Data for Risk-Based Applications, Part 1: Active Soil-Gas Method. LUSTLine Bulletin 42:17-22.

Hartman, B. 2004. How to Collect Reliable Soil Gas Data for Risk-Based Applications, Part 3: Answers to Frequently Asked Questions. LUSTLine Bulletin 48:12-17.

Hartman, B. (Sept. 2006). How to Collect Reliable Soil-Gas Data for Risk-Based Applications, Specifically Vapor Intrusion: Part Four, Updates on Soil-Gas Collection and Analytical Procedures. LUSTLine Bulletin #53. http://www.handpmg.com/lustline53-soil-gas-part-4.htm

Heath, Ralph C. (1983). Basic Ground-Water Hydrology. United States Geological Survey Water-Supply Paper 2220. http://pubs.er.usgs.gov/djvu/WSP/wsp\_2220.pdf

<u>5</u> 12

#### POLLUTION CONTROL BOARD

#### NOTICE OF PROPOSED AMENDMENTS

Hers, I., Zapf-Gilje, R. 1998. "Canadian Consortium Research Project-Filed Validation of Soil Gas Transport to Indoor Air Pathway." In Proceedings of 1998 Petrol. Hydro.and Chem. In Ground Water; API/NGWA, Houston, TX, November 11-13; pp 251-266.

Hers, I., Atwater, J., Li, L., Zapf-Gilje, R. 2000. "Evolution of Vadose Zone Biodegradation of BTX Vapors." Journal of Contaminant Hydrology 46(2000): 233-264.

Hers, I., Zapf-Gilje, R., Li, L., Atwater, J. 2001. "The Use of Indoor Air Measurements To Evaluate Intrusion of Subsurface VOC Vapors into Buildings." Journal of the Air & Waste Management Association 51:1318-1331.

Hers, I., Evans, D., Zapf-Gilje, R., Li, L. 2002. "Comparison, Validation and Use of Models for Predicting Indoor Air Quality from Soil and Groundwater Contamination." Soil & Sediment Contamination. 11(4):491-527.

Hers, I., Zapf-Gilje, R., Johnson, P.C., Li, L. 2003. "Evaluation of the Johnson and Ettinger Model for Prediction of Indoor Air Quality." Ground Water Monitoring and Remediation 23(1):62-76.

Howard, Philip H., W.F. Jarvis, W.M. Meylan, and E.M. Michalenko. (1991). Handbook of Environmental Degradation Rates. Lewis Publishers, Inc. Chelsea, Michigan. Available at the Illinois EPA Library, Call Number: 363.7384 HOWA2

International Building Code (2006). Available at the Illinois EPA Library upon request.

Johnson, P.C. 2005. "Identification of Application-Specific Critical Inputs for the 1991 Johnson and Ettinger Vapor Intrusion Algorithm." Ground Water Monitoring and Remediation 25(1):63-78.

Johnson, P.C., Ettinger, R.A. 1991. "Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings." Environmental Science and Technology 25(8):1445-1452.

Johnson, P.C., Kemblowski, W., Johnson, R.L. 1998. "Assessing the Significance of Subsurface Contamination Migration to Enclosed Spaces- Site Specific Alternatives to Generic Estimates." API Publication 4674. American Petroleum Institute: Washington, D.C., December 1998.

Johnson, P.C., Ettinger, R.A., Kurtz, J., Bryan, R., Dester, J.E. 2002. Migration of Soil Gas Vapors to Indoor Air: Determining Vapor Attenuation Factors Using a Screening-

### POLLUTION CONTROL BOARD

#### NOTICE OF PROPOSED AMENDMENTS

Level Model and Field Data from the CDOT-MTL Denver, Colorado Site. American Petroleum Institute. No. 16.

Kremesec, V., Hopkins, H. and Thun, R. (Feb. 2005). A View of the Evaluation of the Vapor Intrusion Pathway from Within the Petroleum Industry. EM Magazine, Air and Waste Management Association.

http://www.astswmo.org/files/publications/tanks/2005SoilVaporMonitoringWorkshop/Evaluation-of-Vapor-Intrusion-Pathway-Kremesec.pdf

Lyman, W. and Reehl, W. (1990). Handbook of Chemical Property Estimation Methods. Available at the Illinois EPA Library, Call Number: 547.3 LYMA 1990.

McAlary, T., R. Ettinger, P. Johnson, B. Eklund, H. Hayes, D.B. Chadwick, and I. Rivera-Duarte. 2009. Review of Best Practices, Knowledge and Data Gaps, and Research Opportunities for the U.S. Department of Navy Vapor Intrusion Focus Areas. Technical Report 1982. SSC Pacific, San Diego, CA.

McHugh, T.E., Connor, J.A., Ahmad, F. 2004. "An Empirical Analysis of the Groundwater-to-Indoor-Air Exposure Pathway: The Role of Background Concentrations in Indoor Air." Environmental Forensics 5:33-44.

McHugh, T., Connor, J., & Ahmad, F. (Mar. 2005). An Empirical Analysis of the Groundwater-to-Indoor-Air Exposure Pathway: The Role of Background Concentrations in Indoor Air. Environmental Forensics, Vol. 5, No. 2. http://www.gsi-net.com/Publications/McHugh\_GW-Air\_2004.pdf

McHugh, T.E., De Blanc, P.C., Pokluda, R.J. 2006. "Indoor Air as a Source of VOC Contamination in Shallow Soils Below Buildings." Soil & Sediment Contamination 15:103-122.

Missouri Department of Natural Resources (April 2005). Missouri Risk-Based Corrective Action for Petroleum Storage Tanks: Soil Gas Sampling Protocol. http://www.dnr.mo.gov/env/hwp/tanks/docs/soil-gas-protocol-2005-04-21.pdf

National Institute for Occupational Safety and Health (NIOSH). (2005). NIOSH Pocket Guide to Chemical Hazards. http://www.cdc.gov/niosh/npg/default.html

Nazaroff, W.W. 1988. "Predicting the Rate of 222Rn Entry from Soil into the Basement of a Dwelling Due to Pressure-Driven Air Flow." Radiation Protection Dosimetry 24(1/4):199-202.

#### POLLUTION CONTROL BOARD

#### NOTICE OF PROPOSED AMENDMENTS

Nazaroff, W.W., Feustel, H., Nero, A.V., Revzan, K.L., Grimsrud, D.T., Essling, M.A., Toohey, R.E. 1985. "Radon Transport into a Detached One-Story House with a Basement." Atmosphere & Environment 19(1):31-46.

Nelson, D., Lapara, T., Novak, P. 2010. "Effects of Ethanol-Based Fuel Contamination: Microbial Community Changes, Production of Regulated Compounds and Methane Generation." Environmental Science and Technology 44(12):4525-4530.

New Hampshire Department of Environmental Services (April 2005). Draft Vapor Intrusion Guidance. http://www.des.state.nh.us/ORCB/doclist/pdf/vapor\_intrusion.pdf

New Jersey Department of Environmental Protection (June 2005). Draft Vapor Intrusion Guidance. http://www.state.nj.us/dep/srp/guidance/vaporintrusion/vig.htm

New York Department of Environmental Conservation (Nov. 2004). Evaluating the Potential for Vapor Intrusion at Past, Current and Future Sites, Draft. http://www.ny-brownfields.com/PDF\_Files/Draft\_Policy.pdf

Ohio EPA. 2010. Guidance Document for Sample Collection and Evaluation of Vapor Intrusion to Indoor Air for Remedial Response and Voluntary Action Programs. http://www.epa.state.oh.us/portals/30/rules/VI%20guidance.pdf

Patterson, B.M., Davis, G.B. 2009. "Quantification of Vapor Intrusion Pathways into a Slab-on-Ground Building under Varying Environmental Conditions." Environmental Science and Technology 43:650-656.

Pennsylvania Department of Environmental Protection (June 2004). Land Recycling Program Technical Guidance Manual Section IV.A.4 Vapor Intrusion into Buildings from Groundwater and Soil Under the Act 2 Statewide Health Standard. http://164.156.71.80/VWRQ.asp?docid=2087d8407c0e00000000051100000511&context =2&backlink=WXOD.aspx%3ffs%3d2087d8407c0e00008000051000000510%26ft%3d1

Persily, A. (March 1999). Myths About Building Envelopes. ASHRAE Journal. http://www.argonair.com/pdf/Myth%20About%20Bldg%20Env.pdf

Provoost, J., Bosman, A., Reijnders, L., Bronders, J., Touchant, K., Swartjes, F. 2010. "Vapor Intrusion from the Vadose Zone- Seven Algorithms Compared." Journal of Soils and Sediments 10:473-483.

#### POLLUTION CONTROL BOARD

#### NOTICE OF PROPOSED AMENDMENTS

Ririe, G.T., Sweeney, R., Hartman, B. 2009. BP Standard Operating Procedures for Petroleum Hydrocarbon Vapor Intrusion Sampling. Draft document, not published.

Roggemans, S., Bruce, C., Johnson, P.C., Johnson, R.L. 2001. Vadose Zone Natural Attenuation of Hydrocarbon Vapors. American Petroleum Institute. No. 15.

Siegel, L. (April 2005). A Community View of Vapor Intrusion. Center for Public Environmental Oversight. http://www.cpeo.org/pubs/CommunityView-V12.doc

Stanin, F. (March 2006). Vapor Intrusion: Breaking Through the Roadblocks to Progress. Superfund and Natural Resource Damages Litigation Committee Newsletter. Vol. 3, No. 1.

http://www.abanet.org/environ/committees/superfundnatresdamages/newsletter/mar06/superfund0306.pdf

The Star-Ledger (Aug. 12, 2006). DEP to review sites after day-care fiasco. Newark, New Jersey. Available from the Illinois EPA library upon request.

Syracuse Research Corporation (SRC). CHEMFATE Database. SRC. Syracuse, NY. http://www.srcinc.com/what-we-do/databaseforms.aspx?id=381

Syracuse Research Corporation (SRC). PHYSPROP Database. SRC. Syracuse, NY. http://www.srcinc.com/what-we-do/databaseforms.aspx?id=386

The Tri-Service Environmental Risk Assessment Workgroup (U.S. Air Force, U.S. Navy, U.S. Army). 2008. Tri-Services Handbook for the Assessment of the Vapor Intrusion Pathway.

http://portal.navfac.navy.mil/portal/page/portal/navfac/navfac\_ww\_pp/navfac\_nfesc\_pp/e nvironmental/erb/resourceerb/dod%20vi%20guidance%20handbook\_dftfinal.pdf

Tilman, F.D., Weaver, J.W. 2005. Review of Recent Research on Vapor Intrusion. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC. EPA/600/R-05/106.

United States Geological Survey. Water Basics Glossary of Terms. http://capp.water.usgs.gov/GIP/h2o\_gloss/ Last modified January 13, 2009.

U.S. Department of Agriculture, Natural Resources Conservation Service. 1992. Proposed Illinois State Soil. http://www.il.nrcs.usda.gov/technical/soils/soildrum.html

<u>9</u> 12

## POLLUTION CONTROL BOARD

#### NOTICE OF PROPOSED AMENDMENTS

U.S. EPA (Mar. 2008). Brownfields Technical Primer: Vapor Intrusion Considerations for Redevelopment. EPA 542-R-08-001. http://www.brownfieldstsc.org/pdfs/BTSC%20Vapor%20Intrustion%20Considerations%

20for%20Redevelopment%20EPA%20542-R-08-001.pdf

U.S. EPA. (July 1997). Health Effects Assessment Summary Tables. FY 1997 Update. EPA Publication No. EPA 540/R-97-036. Available at http://nepis.epa.gov

U.S. EPA. Integrated Risk Information System. http://cfpub.epa.gov/ncea/iris/index.cfm

U.S. EPA, Office of Inspector General. 2009. Evaluation Report: Lack of Final Guidance on Vapor Intrusion Impedes Efforts to Address Indoor Air Risks. Report No. 10-P-0042.

U.S. EPA, Office of Underground Storage Tanks. 2010. Petroleum Vapor Intrusion Workgroup Information Paper. Draft document, not published.

U.S. EPA. Provisional Peer Reviewed Toxicity Values. Superfund Health Risk Technical Support Center. National Center for Environmental Assessment, Office of Research and Development. Cincinnati, OH 45268, (513) 569-7300.

U.S. EPA. (January 2004). Superfund Chemical Data Matrix. http://www.epa.gov/superfund/sites/npl/hrsres/tools/scdm.htm

U.S. EPA. (July 2004). Water9, Version 2.0. http://www.epa.gov/ttn/chief/software/water/

Weaver, J.W., Tilman, F.D. 2005. Uncertainty and the Johnson-Ettinger Model for Vapor Intrusion Calculations. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC. EPA/600/R-05/110

- 7) <u>Will this rulemaking replace any emergency rulemaking currently in effect</u>? No
- 8) <u>Does this rulemaking contain an automatic repeal date</u>? No
- 9) <u>Does this rulemaking contain incorporations by reference</u>? Yes
- 10) Are there any other proposed amendments pending on this Part? No
- 11) <u>Statement of Statewide Policy Objectives</u>: These proposed amendments do not create or

## POLLUTION CONTROL BOARD

## NOTICE OF PROPOSED AMENDMENTS

enlarge a State mandate as defined in Section 3(b) of the State Mandates Act [30 ILCS 805/3(b)].

12) <u>Time, Place, and Manner in which interested persons may comment on this proposed</u> <u>rulemaking</u>: The Board will accept written public comments on this proposal for a period of 45 days after the date of publication in the Illinois Register. Public comments should refer to docket R11-9 and must be filed with the Clerk of the Board. Public comments may be filed at the following address:

> Pollution Control Board John Therriault, Assistant Clerk JRTC 100 W. Randolph Street, Suite 11-500 Chicago, IL 60601

In addition, public comments may be filed electronically through COOL on the Board's Web site at www.ipcb.state.il.us. Persons interested in obtaining copies of Board opinions and orders in R11-9 may do so by contacting the Clerk's office at (312) 814-3620 or by download from COOL on the Board's Web site. For more information, please contact Hearing Officer Richard McGill by telephone at (312) 814-6983 or by e-mail at mcgillr@ipcb.state.il.us.

#### 13) Initial Regulatory Flexibility Analysis:

- A) <u>Types of small businesses, small municipalities, and not-for-profit corporations affected</u>: This rulemaking could impact any small business, small municipality, and not-for-profit corporation in a regulatory program subject to TACO remediation objectives (e.g., Leaking UST Program or SRP). The amendments are proposed to become effective on a date certain 60 days after their final adoption by the Board. The delayed effective date would help to accommodate those entities with sites near closure who wish to submit remediation completion documentation to IEPA in order to receive a No Further Remediation (NFR) letter in accordance with the existing TACO regulations.
- B) <u>Reporting, bookkeeping, or other procedures required for compliance</u>: This rulemaking does not impose additional bookkeeping requirements beyond those already required by the existing rules. Under the proposed amendments, where a school receives an NFR letter based upon the use of an indoor inhalation building control technology, the site owner/operator must notify IEPA upon the building control technology being rendered inoperable.

 $\frac{11}{12}$ 

## POLLUTION CONTROL BOARD

## NOTICE OF PROPOSED AMENDMENTS

- C) <u>Types of Professional skills necessary for compliance</u>: In addition to the professional skills currently necessary to comply with the existing TACO regulations, compliance with the amendments may involve addressing the indoor inhalation exposure route through the sampling/analysis of soil gas and the design/installation of building control technologies, such as sub-slab depressurization (SSD) systems or vented raised floors.
- 14) <u>Regulatory Agenda in which these amendments were summarized</u>: January 2012

The full text of the Proposed Amendments begins on the next page:

a . 18 Ge

TITLE 35: ENVIRONMENTAL PROTECTION SUBTITLE G: WASTE DISPOSAL CHAPTER I: POLLUTION CONTROL BOARD SUBCHAPTER f: RISK BASED CLEANUP OBJECTIVES PART 742 TIERED APPROACH TO CORRECTIVE ACTION OBJECTIVES RECEIVE CLERK'S OFFICE SUBPART A: INTRODUCTION MAY 1 0 2012 Section 742.100 Intent and Purpose
742.105 Applicability
742.110 Overview of Tiered Approach
742.115 Key Elements
742.120 Site Characterization STATE OF ILLINOIS Pollution Control Board SUBPART B: GENERAL Section 742.200 Definitions 742.205 Severability 742.210 Incorporations by Reference 742.216 Interportations 2, Actended
742.215 Determination of Soil Attenuation Capacity
742.220 Determination of Soil Saturation Limit
742.222 Determination of Soil Vapor Saturation Limit
742.225 Demonstration of Compliance with Soil and Groundwater Remediation Objectives 742.227 Demonstration of Compliance with Soil Gas Remediation Objectives for the Outdoor and Indoor Inhalation Exposure Routes 742.230 Agency Review and Approval SUBPART C: EXPOSURE ROUTE EVALUATIONS Section 742.300 Exclusion of Exposure Route 742.305 Contaminant Source and Free Product Determination 742.310 Outdoor Inhalation Exposure Route Indoor Inhalation Exposure Route Soil Ingestion Exposure Route 742.312 742.315 742.320 Groundwater Ingestion Exposure Route SUBPART D: DETERMINING AREA BACKGROUND Section 742.400 Area Background
742.405 Determination of Area Background for Soil
742.410 Determination of Area Background for Groundwater 742.415 Use of Area Background Concentrations SUBPART E: TIER 1 EVALUATION Section 742.500 Tier 1 Evaluation Overview 742.505 Tier 1 Soil, Soil Gas and Groundwater Remediation Objectives 742.505Tier 1 Soil, Soil Gas and Groundwater Remediation Objectives742.510Tier 1 Remediation Objectives Tables for the Ingestion, Outdoor Inhalation, and Soil Component of the Groundwater Ingestion Exposure Routes

Tier 1 Remediation Objectives Tables for the Indoor Inhalation 742.515 Exposure Route SUBPART F: TIER 2 GENERAL EVALUATION Section 742.600 Tier 2 Evaluation Overview 742.605 Land Use 742.610 Chemical and Site Properties SUBPART G: TIER 2 SOIL AND SOIL GAS EVALUATION Section 742.700 Tier 2 Soil Evaluation Overview 742.700 Ther 2 Soll Evaluation Overview
742.705 Parameters for Soil Remediation Objective Equations
742.710 SSL Soil Equations
742.712 SSL Soil Gas Equation for the Outdoor Inhalation Exposure Route
742.715 RBCA Soil Equations
742.717 J&E Soil Gas Equations for the Indoor Inhalation Exposure Route
742.720 Chemicals with Cumulative Noncarcinogenic Effects SUBPART H: TIER 2 GROUNDWATER EVALUATION Section 742.00 742.805 742.800 Tier 2 Groundwater Evaluation Overview Tier 2 Groundwater Remediation Objectives RBCA Calculations to Predict Impacts from Remaining Groundwater Contamination 742.812 J&E Groundwater Equations for the Indoor Inhalation Exposure Route SUBPART I: TIER 3 EVALUATION Section 742.900Tier 3 Evaluation Overview742.905Modifications of Parameters742.910Alternative Models742.915Formal Risk Assessments 742.920 Impractical Remediation 742.925 Exposure Routes
742.930 Derivation of Toxicological Data
742.935 Indoor Inhalation Exposure Route SUBPART J: INSTITUTIONAL CONTROLS Section 742.1000 Institutional Controls 742.1005No Further Remediation Letters742.1010Environmental Land Use Controls 742.1012 Federally Owned Property: Land Use Control Memoranda of Agreement 742.1015 Ordinances 742.1020 Highway Authority Agreements and Highway Authority Agreement Memoranda of Agreement SUBPART K: ENGINEERED BARRIERS Section 742.1100 Engineered Barriers 742.1105 Engineered Barrier Requirements

Section 742.1200 Building Control Technologies Building Control Technology Proposals 742.1205 Building Control Technology Requirements 742.1210 742.APPENDIX A General 742. ILLUSTRATION A Developing Soil Remediation Objectives Under the Tiered Approach 742. ILLUSTRATION B Developing Groundwater Remediation Objectives Under the Tiered Approach 742. TABLE A Soil Saturation Limits (Csat) for Chemicals Whose Melting Point is Less thanThan 30°C 742. TABLE B Tolerance Factor (K) 742. TABLE C Coefficients {AN-I+1} for W Test of Normality, for N=2(1)50 742. TABLE D Percentage Points of the W Test for n=3(1)50742.TABLE E Similar-Acting Noncarcinogenic Chemicals 742. TABLE F Similar-Acting Carcinogenic Chemicals 742. TABLE G Concentrations of Inorganic Chemicals in Background Soils 742. TABLE H Concentrations of Polynuclear Aromatic Hydrocarbon Chemicals in Background Soils 742. TABLE I Chemicals Whose Tier 1 Class I Groundwater Remediation Objective Exceeds the 1 in 1,000,000 Cancer Risk Concentration List of TACO Volatile Chemicals for the Indoor Inhalation TABLE J Exposure Route Soil Vapor Saturation Limits (Cvsat) for Volatile Chemicals TABLE K Tier 1 Illustrations and Tables 742.APPENDIX B Tier 1 Evaluation 742.ILLUSTRATION A 742. TABLE A Tier 1 Soil Remediation Objectives for Residential Properties 742. TABLE B Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties pH Specific Soil Remediation Objectives for Inorganics and 742.TABLE C Ionizing Organics for the Soil Component of the Groundwater Ingestion Route (Class I Groundwater) pH Specific Soil Remediation Objectives for Inorganics and 742. TABLE D Ionizing Organics for the Soil Component of the Groundwater Ingestion Route (Class II Groundwater) 742. TABLE E Tier 1 Groundwater Remediation Objectives for the Groundwater Component of the Groundwater Ingestion Route 742.TABLE F Values Used to Calculate the Tier 1 Soil Remediation Objectives for the Soil Component of the Groundwater Ingestion Route TABLE G Soil Gas Remediation Objectives for the Outdoor Inhalation Exposure Route Tier 1 Soil Gas and Groundwater Remediation Objectives TABLE H for the Indoor Inhalation Exposure Route - Diffusion and Advection TABLE I Tier 1 Soil Gas and Groundwater Remediation Objectives Indoor Inhalation Exposure Route - Diffusion Only for the 742.APPENDIX C Tier 2 Illustrations and Tables Tier 2 Evaluation for Soil 742.ILLUSTRATION A 742.ILLUSTRATION B Tier 2 Evaluation for Groundwater 742.ILLUSTRATION C US Department of Agriculture Soil Texture Classification 742. TABLE A SSL Equations

SUBPART L: BUILDING CONTROL TECHNOLOGIES

742. TABLE B SSL Parameters 742. TABLE C RBCA Equations 742. TABLE D RBCA Parameters 742. TABLE E Default Physical and Chemical Parameters 742. TABLE F Methods for Determining Physical Soil Parameters 742. TABLE G Error Function (erf) 742. TABLE H Q/C Values Byby Source Area 742. TABLE I Koc Values for Ionizing Organics as a Function of pH (cm3/g or L/kg or cm3water / gsoil) 742. TABLE J Values to be Substituted for kd or ks when Evaluating Inorganics as a Function of pH (cm3/g or L/kg or cm3water / gsoil) 742. TABLE K Parameter Estimates for Calculating Water-Filled Soil Porosity <u>qw(?W</u>) 742. TABLE L J&E Equations 742. TABLE M J&E Parameters 742.APPENDIX D Highway Authority Agreement 742.APPENDIX E Highway Authority Agreement Memorandum of Agreement Environmental Land Use Control 742.APPENDIX F 742.APPENDIX G Model Ordinance 742.APPENDIX H Memorandum of Understanding

AUTHORITY: Implementing Sections 22.4, 22.12, Title XVI, and Title XVII and authorized by Sections 27 and 58.5 of the Environmental Protection Act [415 ILCS 5/22.4, 22.12, 27, and 58.5 and Title XVI and Title XVII].

SOURCE: Adopted in R97-12(A) at 21 Ill. Reg. 7942, effective July 1, 1997; amended in R97-12(B) at 21 Ill. Reg. 16391, effective December 8, 1997; amended in R97-12(C) at 22 Ill. Reg. 10847, effective June 8, 1998; amended in R00-19(A) at 25 Ill. Reg. 651, effective January 6, 2001; amended in R00-19(B) at 25 Ill. Reg. 10374, effective August 15, 2001; amended in R00-19(C) at 26 Ill. Reg. 2683, effective February 5, 2002; amended in R06-10 at 31 Ill. Reg. 4063, effective February 23, 2007; amended in R06-10 at <del>31</del>36 Ill. Reg. <del>4063 effective</del> March 9, 2007; amended in R11 09 at 36 Ill. Reg. \_\_\_\_\_, effective .NOTE: Italics indicates statutory language\_\_\_\_\_.

SUBPART A: INTRODUCTION

Section 742.105 Applicability

a) Any person, including a person required to perform an investigation pursuant to the Illinois Environmental Protection Act [415 ILCS 5] (Act), may elect to proceed under this Part to the extent allowed by State or federal law and regulations and the provisions of this Part and subject to the exceptions listed in subsection (h) below. A person proceeding under this Part may do so to the extent such actions are consistent with the requirements of the program under which site remediation is being addressed.

b) This Part is to be used in conjunction with the procedures and requirements applicable to the following programs:

1) Leaking Underground Storage Tanks (35 Ill. Adm. Code 731, 732, and 734);

2) Site Remediation Program (35 Ill. Adm. Code 740); and

3) RCRA Part B Permits and Closure Plans (35 Ill. Adm. Code 724 and 725).

c) The procedures in this Part may not be used if their use would delay response action to address imminent and substantial threats to human health and the environment. This Part may only be used after actions to address such threats have been completed.

d) This Part may be used to develop remediation objectives to protect surface waters, sediments or ecological concerns, when consistent with the regulations of other programs, and as approved by the Agency.

e) A no further remediation determination issued by the Agency prior to July 1, 1997 pursuant to Section 4(y) of the Act or one of the programs listed in subsection (b) of this Section that approves completion of remedial action relative to a release shall remain in effect in accordance with the terms of that determination.

f) Site specific groundwater remediation objectives determined under this Part for contaminants of concern may exceed the groundwater quality standards established pursuant to the rules promulgated under the Illinois Groundwater Protection Act [415 ILCS 55] as long as done in accordance with Sections 742.805 and 742.900(c)(9). (See 415 ILCS 5/58.5(d)(4)

g) Where contaminants of concern include polychlorinated byphenyls (PCBs), a person may need to evaluate the applicability of regulations adopted under the Toxic Substances Control Act (15 U.S.C.USC 2601).

h) This Part may not be used in lieu of the procedures and requirements applicable to landfills under 35 Ill. Adm. Code 807 or 811 through 814.

i) An evaluation of the indoor inhalation exposure route under this Part addresses the potential of contaminants present in soil gas or groundwater to reach human receptors within buildings. This Part does not address the remediation or mitigation of any contamination within a building from a source other than soil gas or groundwater, such as the building structure itself and products within the building.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.110 Overview of Tiered Approach

a) This Part presents an approach for developing remediation objectives (see Appendix A, Illustrations A and B) that include an option for exclusion of pathways from further consideration, use of area background concentrations as remediation objectives and three tiers for selecting applicable remediation objectives. An understanding of human exposure routes is necessary to properly conduct an evaluation under this approach. In some cases, applicable human exposure route(s)routes can be excluded from further consideration prior to any tier evaluation. Selecting which tier or combination of tiers to be used to develop remediation objectives is dependent on the site-specific conditions and remediation goals. Tier 1 evaluations and Tier 2 evaluations are not prerequisites to conducting Tier 3 evaluations.

b) A Tier 1 evaluation compares the concentration of contaminants detected at a site to the corresponding remediation objectives for residential and industrial/ commercial properties contained in Appendix B, Tables A, B, C, D and E, G, H and I. To complete a Tier 1 evaluation, the extent and concentrations of the contaminants of concern, the groundwater class, the land use classification, human exposure routes at the site, and, if appropriate, soil pH,

must be known. If remediation objectives are developed based on industrial/commercial property use, then institutional controls under Subpart J are required.

c) A Tier 2 evaluation uses the risk based equations from the Soil Screening Level (SSL Model) model and Risk Based Corrective Action (RBCA Model) model and modified Johnson and Ettinger Model (J&E Model) model) documents listed in Appendix C, Tables A, and C, and L, respectively. In addition to the information that is required for a Tier 1 evaluation, site-specific information is used to calculate Tier 2 remediation objectives. As in Tier 1, Tier 2 evaluates residential and industrial/commercial properties only. If remediation objectives are developed based on industrial/commercial property use, then institutional controls under Subpart J are required.

d) A Tier 3 evaluation allows alternative parameters and factors, not available under a Tier 1 or Tier 2 evaluation, to be considered when developing remediation objectives. Remediation objectives developed for conservation and agricultural properties can only be developed under Tier 3.

e) Remediation objectives may be developed using area background concentrations or any of the three tiers if the evaluation is conducted in accordance with applicable requirements in Subparts D through I. When contaminant concentrations do not exceed remediation objectives developed under one of the tiers or area background procedures under Subpart D, further evaluation under any of the other tiers is not required.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.115 Key Elements

To develop remediation objectives under this Part, the following key elements shall be addressed.

a) Exposure Routes

1) This Part identifies the following as potential exposure routes to be addressed:

A) Outdoor Inhalation; inhalation;

B) Indoor Inhalation; inhalation;

C-B) Soil ingestion;

D-C) Groundwater ingestion; and

E-D) Dermal contact with soil.

2) The evaluation of exposure routes under subsections (a)(1)(A), (a)(1)(B),and (a)(1)(C) and (a)(1)(D) of this Section is required for all sites when developing remediation objectives or excluding exposure pathways. Evaluation of the dermal contact exposure route is required for use of RBCA equations in Appendix C, Table C or use of formal risk assessment under Section 742.915.

3) The groundwater ingestion exposure route is comprised of two components:

A) Migration from soil to groundwater (soil component); and

B) Direct ingestion of groundwater (groundwater component).

4) The outdoor inhalation route is comprised of two components:

A) Migration from soil through soil gas to outdoor air (soil component); and

B) Migration from soil gas to outdoor air (soil gas component).

5) The indoor inhalation exposure route is comprised of two components:

A) Migration from soil gas to indoor air (soil gas component); and

B) Migration from groundwater through soil gas to indoor air (groundwater component).

b) Contaminants of Concern

The contaminants of concern to be remediated depend on the following:

1) The materials and wastes managed at the site;

2) The extent of the no further remediation determination being requested from the Agency pursuant to a specific program; and

3) The requirements applicable to the specific program, as listed at Section 742.105(b) under which the remediation is being performed.

c) Land Use

The present and post-remediation uses of the site where exposures may occur shall be evaluated. The land use of a site, or portion thereof, shall be classified as one of the following:

- 1) Residential property;
- 2) Conservation property;
- 3) Agricultural property; or

4) Industrial/commercial property.

d) Environmental Media of Concern This Part provides procedures for developing remediation objectives for the following environmental media:

1) Soil;

- 2) Soil gas;
- 3) Groundwater.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART B: GENERAL

Section 742.200 Definitions

Except as stated in this Section, or unless a different meaning of a word or term is clear from the context, the definition of words or terms in this Part shall be the same as that applied to the same words or terms in the Act.

"Act" means the Illinois Environmental Protection Act [415 ILCS 5].

"ADL" means Acceptable Detection Limit, which is the detectable concentration of a substance that is equal to the lowest appropriate Practical Quantitation Limit (PQL) as defined in this Section.

"Agency" means the Illinois Environmental Protection Agency.

"Agricultural Property" means any real property for which its present or postremediation use is for growing agricultural crops for food or feed either as harvested crops, cover crops or as pasture. This definition includes, but is not limited to, properties used for confinement or grazing of livestock or poultry and for silviculture operations. Excluded from this definition are farm residences, farm outbuildings and agrichemical facilities.

"Aquifer" means saturated (with groundwater) soils and geologic materials which are sufficiently permeable to readily yield economically useful quantities of water to wells, springs, or streams under ordinary hydraulic gradients. (Illinois Groundwater Protection Act [415 ILCS 55/3(a)])

"Area Background" means concentrations of regulated substances that are consistently present in the environment in the vicinity of a site that are the result of natural conditions or human activities, and not the result solely of releases at the site. [415 ILCS 5/58.2]

"ASTM" means the American Society for Testing and Materials.

"Board" means the Illinois Pollution Control Board.

"Building" means a man-made structure with an enclosing roof and enclosing walls, except for windows and doors, that is fit for any human occupancy for at least six consecutive months.

"Building Control Technology" means any technology or barrier that affects air flow or air pressure within a building for purposes of reducing contaminant migration to the indoor air.

"Cancer Risk" means a unitless probability of an individual developing cancer from a defined exposure rate and frequency.

"Cap" means a barrier designed to prevent the infiltration of precipitation or other surface water, or impede the ingestion or inhalation of contaminants.

"Capillary Fringe" means the zone above the water table in which water is held by surface tension. Water in the capillary fringe is under a pressure less than atmospheric.

"Carcinogen" means a contaminant that is classified as a category A1 or A2 carcinogen by the American Conference of Governmental Industrial Hygienists; a category 1 or 2A/2B carcinogen by the World Health Organization's International Agency for Research on Cancer; a "human carcinogen" or "anticipated human carcinogen" by the United States Department of Health and Human Service National Toxicological Program; or a category A or B1/B2 carcinogen or as "carcinogenic to humans" or "likely to be carcinogenic to humans" by the United States Environmental Protection Agency in the integrated risk information system or a final rule issued in a Federal Register notice by the USEPA. [415 ILCS 5/58.2]

"Class I Groundwater" means groundwater that meets the Class I: Potable Resource Groundwater criteria set forth in 35 Ill. Adm. Code 620.

"Class II Groundwater" means groundwater that meets the Class II: General Resource Groundwater criteria set forth in 35 Ill. Adm. Code 620.

"Conservation Property" means any real property for which present or postremediation use is primarily for wildlife habitat.

"Construction Worker" means a person engaged on a temporary basis to perform work involving invasive construction activities including, but not limited to, personnel performing demolition, earth-moving, building, and routine and emergency utility installation or repair activities.

"Contaminant of Concern" or "Regulated Substance of Concern" means any contaminant that is expected to be present at the site based upon past and current land uses and associated releases that are known to the person conducting a remediation based upon reasonable inquiry. [415 ILCS 5/58.2]

"County highwayHighway" means county highway as defined in the Illinois Highway Code, [605 ILCS 5].

"District road<u>Road</u>" means district road as defined in the Illinois Highway Code<sub>7</sub> [605 ILCS 5].

"Engineered Barrier" means a barrier designed or verified using engineering practices that limits exposure to or controls migration of the contaminants of concern.

"Environmental Land Use Control" means an instrument that meets the requirements of this Part and is placed in the chain of title to real property that limits or places requirements upon the use of the property for the purpose of protecting human health or the environment, is binding upon the property owner, heirs, successors, assigns, and lessees, and runs in perpetuity or until the Agency approves, in writing, removal of the limitation or requirement from the chain of title.

"Exposure Route" means the transport mechanism by which a contaminant of concern reaches a receptor.

"Federally Owned Property" means real property owned in fee by the United States of America on which institutional controls are sought to be placed in accordance with this Subpart.

"Federal Landholding Entity" means that federal department, agency, or instrumentality with the authority to occupy and control the day-to-day use, operation and management of Federally Owned Property.

"Free Product" means a contaminant that is present as a non-aqueous phase liquid for chemicals whose melting point is less than 302-2C (e.g., liquid not dissolved in water).

"GIS" means Geographic Information System.

"GPS" means Global Positioning System.

"Groundwater" means underground water which occurs within the saturated zone and geologic materials where the fluid pressure in the pore space is equal to or greater than atmospheric pressure. [415 ILCS 5/3.64]

"Groundwater Quality Standards" means the standards for groundwater as set forth in 35 Ill. Adm. Code 620.

"Hazard Quotient" means the ratio of a single substance exposure level during a specified time period to a reference dose for that substance derived from a similar exposure period.

"Highway" means any public way for vehicular travel which has been laid out in pursuance of any law of this State, or of the Territory of Illinois, or which has been established by dedication, or used by the public as a highway for 15 years, or which has been or may be laid out and connect a subdivision or platted land with a public highway and which has been dedicated for the use of the owners of the land included in the subdivision or platted land where there has been an acceptance and use under such dedication by such owners, and which has not been vacated in pursuance of law. The term "highway" includes rights of way, bridges, drainage structures, signs, guard rails, protective structures and all other structures and appurtenances necessary or convenient for vehicular traffic. A highway in a rural area may be called a "road", while a highway in a municipal area may be called a "street". (Illinois Highway Code [605 ILCS 5/2-202])

"Highway Authority" means the Department of Transportation with respect to a State highway; the Illinois State Toll Highway with respect to a toll highway; the County Board with respect to a county highway or a county unit district road if a discretionary function is involved and the County Superintendent of Highways if a ministerial function is involved; the Highway Commissioner with respect to a township or district road not in a county unit road district; or the corporate authorities of a municipality with respect to a municipal street. (Illinois Highway Code [605 ILCS 5/2-213])

"Human Exposure Pathway" means a physical condition which may allow for a risk to human health based on the presence of all of the following: contaminants of concern; an exposure route; and a receptor activity at the point of exposure that could result in contaminant of concern intake.

"Industrial/Commercial Property" means any real property that does not meet the definition of residential property, conservation property or agricultural property.

"Infiltration" means the amount of water entering into the ground as a result of precipitation.

"Institutional Control" means a legal mechanism for imposing a restriction on land use, as described in Subpart J.

"Land Use Control Memoranda of Agreement" mean agreements entered into between one or more agencies of the United States and the Illinois Environmental Protection Agency that limit or place requirements upon the use of Federally Owned Property for the purpose of protecting human health or the environment. "Man-Made Pathways" means constructed physical conditions that may allow for the transport of regulated substances including, but not limited to, sewers, utility lines, utility or elevator vaults, building foundations, basements, crawl spaces, drainage ditches, or previously excavated and filled areas, or sumps. [415 ILCS 5/58.2]

"Natural Pathways" means natural physical conditions that may allow for the transport of regulated substances including, but not limited to, soil, groundwater, sand seams and lenses, and gravel seams and lenses. [415 ILCS 5/58.2]

"Person" means an individual, trust, firm, joint stock company, joint venture, consortium, commercial entity, corporation (including a government corporation), partnership, association, state, municipality, commission, political subdivision of a state, or any interstate body including the United States government and each department, agency, and instrumentality of the United States. [415 ILCS 5/58.2]

"Point of Human Exposure" means the points at which human exposure to a contaminant of concern may reasonably be expected to occur. The point of human exposure is at the source, unless an institutional control limiting human exposure for the applicable exposure route has been or will be in place, in which case the point of human exposure will be the boundary of the institutional control. Point of human exposure may be at a different location than the point of compliance.

"Populated Area" means:\_\_\_

an area within the boundaries of a municipality that has a population of 10,000 or greater based on the year 2000 or most recent census; or

an area less than three miles from the boundary of a municipality that has a population of 10,000 or greater based on the year 2000 or most recent census.

"Potable" means generally fit for human consumption in accordance with accepted water supply principles and practices. (Illinois Groundwater Protection Act [415 ILCS 55/3(h)])

"PQL" means practical quantitation limit or estimated quantitation limit, which is the lowest concentration that can be reliably measured within specified limits of precision and accuracy for a specific laboratory analytical method during routine laboratory operating conditions in accordance with "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods", EPA Publication No. SW-846, incorporated by reference in Section 742.210. When applied to filtered water samples, PQL includes the method detection limit or estimated detection limit in accordance with the applicable method revision in: "Methods for the Determination of Organic Compounds in Drinking Water", Supplement II", EPA Publication No. EPA/600/4-88/039; "Methods for the Determination of Organic Compounds in Drinking Water, Supplement III", EPA Publication No. EPA/600/R-95/131, all of which are incorporated by reference in Section 742.210.

"Qsoil" means the volumetric flow rate of soil gas from the subsurface into the enclosed building space.

"RBCA" means Risk Based Corrective Action as defined in ASTM E-1739-95, as incorporated by reference in Section 742.210.

"RCRA" means the Resource Conservation and Recovery Act of 1976 (42  $\frac{U.S.C.USC}{0.000}$ 

"Reference Concentration" or "RfC" means an estimate of a daily exposure, in units of milligrams of chemical per cubic meter of air (mg/m+3), to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious effects during a portion of a lifetime (up to approximately seven years, subchronic) or for a lifetime (chronic).

"Reference Dose" or "RfD" means an estimate of a daily exposure, in units of milligrams of chemical per kilogram of body weight per day (mg/kg/d), to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious effects during a portion of a lifetime (up to approximately seven years, subchronic) or for a lifetime (chronic).

"Regulated Substance" means any hazardous substance as defined under Section 101(14) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (P.L. 96-510) and petroleum products including crude oil or any fraction thereof, natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). [415 ILCS 5/58.2]

"Residential Property" means any real property that is used for habitation by individuals, or where children have the opportunity for exposure to contaminants through soil ingestion or inhalation (indoor or outdoor) at educational facilities, health care facilities, child care facilities or outdoor recreational areas. [415 ILCS 5/58.2]

"Right of Way" means the land, or interest therein, acquired for or devoted to a highway. (Illinois Highway Code [605 ILCS 5/2-217])

"Saturated Zone" means a subsurface zone in which all the interstices or voids are filled with water under pressure greater than that of the atmosphere.

"Similar-Acting Chemicals" are chemical substances that have toxic or harmful effect on the same specific organ or organ system (see Appendix A.Tables E and F for a list of similar-acting chemicals with noncarcinogenic and carcinogenic effects).

"Site" means any single location, place, tract of land or parcel of property, or portion thereof, including contiguous property separated by a public right-of-way. [415 ILCS 5/58.2]

"Slurry Wall" means a man-made barrier made of geologic material which is constructed to prevent or impede the movement of contamination into a certain area.

"Soil Gas" means the air existing in void spaces in the soil between the groundwater table and the ground surface.

"Soil Saturation Limit" or "Csat" means the contaminant concentration at which soil pore air and pore water are saturated with the chemical and the adsorptive limits of the soil particles have been reached. the contaminant concentration at which the absorptive limits of the soil particles, the solubility limits of the available soil moisture, and saturation of soil pore air have been reached. Above the soil saturation concentration, the assumptions regarding vapor transport to air and/or dissolved phase transport to groundwater (for chemicals which that are liquid at ambient soil temperatures) do not apply, and alternative modeling approaches are required.

"Soil Vapor Saturation Limit" or "Cvsat" means the maximum vapor concentration that can exist in the soil pore air at a given temperature and pressure.

"Solubility" means a chemical specific maximum amount of solute that can dissolve in a specific amount of solvent (groundwater) at a specific temperature.

"SPLP" means Synthetic Precipitation Leaching Procedure (Method 1312) as published in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA Publication No. SW-846, as incorporated by reference in Section 742.210.

"SSL" means Soil Screening Levels as defined in USEPA's Soil Screening Guidance: User's Guide and Technical Background Document, as incorporated by reference in Section 742.210.

"State highwayHighway" means stateState highway as defined in the Illinois Highway Code [605 ILCS 5].

"Stratigraphic Unit" means a site-specific geologic unit of native deposited material and/or bedrock of varying thickness (e.g., sand, gravel, silt, clay, bedrock, etc.). A change in stratigraphic unit is recognized by a clearly distinct contrast in geologic material or a change in physical features within a zone of gradation. For the purposes of this Part, a change in stratigraphic unit is identified by one or a combination of differences in physical features such as texture, cementation, fabric, composition, density, and/or permeability of the native material and/or bedrock.

"Street" means street as defined in the Illinois Highway Code [605 ILCS 5].

"TCLP" means Toxicity Characteristic Leaching Procedure (Method 1311) as published in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA Publication No. SW-846, as incorporated by reference in Section 742.210.

"Toll highwayHighway" means toll highway as defined in the Illinois Highway Code [605 ILCS 5].

"Total Petroleum Hydrocarbon <u>(" or "</u>TPH<del>)</del>" means the additive total of all petroleum hydrocarbons found in an analytical sample.

"Township **road**Road" means township road as defined in the Illinois Highway Code [605 ILCS 5].

"Unconfined Aquifer" means an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure.

"Volatile Chemicals" means chemicals with a Dimensionless Henry's Law Constant of greater than 1.9 x 10-2 or a vapor pressure greater than 0.1 Torr (mmHg) at 25°C. For purposes of the indoor inhalation exposure route, elemental mercury is included in this definition. "Volatile Organic Compounds (VOCs)" means organic chemical analytes identified as volatiles as published in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA Publication No. SW 846 (incorporated by reference in Section 742.210), method numbers 8011, 8015B, 8021B, 8031, 8260B, 8315A, and 8316. For analytes not listed in any category in those methods, those analytes which have a boiling point less than 200? C and a vapor pressuregreater than 0.1 Torr (mm Hg) at 20? C.

"Water Table" means the top water surface of an unconfined aquifer at atmospheric pressure.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.210 Incorporations by Reference

a) The Board incorporates the following material by reference:

Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770) 488-3357 (November 2007).

ASTM. American Society for Testing and Materials International, \_\_\_\_100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. 2959. (610) 832-9585.

ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000.

ASTM D 2488-00, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), approved February 10, 2000.

ASTM D 1556-00, Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method, approved March 10, 2000.

ASTM D 2167-94, Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method, approved March 15, 1994.

ASTM D 2922-01, Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth), approved June 10, 2001.

ASTM D 2937-00e1, Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method, approved June 10, 2000.

ASTM D 854-02, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, approved July 10, 2002.

ASTM D 2216-98, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, approved February 10, 1998.

ASTM D 4959-00, Standard Test Method for Determination of Water (Moisture) Content of Soil by Direct Heating, approved March 10, 2000.

ASTM D 4643-00, Standard Test Method for Determination of Water (Moisture) Content of Soil by the Microwave Oven Method, approved February 10, 2000.

ASTM D 5084-03, Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, approved November 1, 2003.

ASTM D 422-63 (2002), Standard Test Method for Particle-Size Analysis of Soils, approved November 10, 2002.

ASTM D 1140-00, Standard Test Methods for Amount of Material in Soils Finer than the No. 200 (75 mmum) Sieve, approved June 10, 2000.

ASTM D 3017-01, Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth), approved June 10, 2001.

ASTM D 4525-90 (2001), Standard Test Method for Permeability of Rocks by Flowing Air, approved May 25, 1990.

ASTM D 2487-00, Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System), approved March 10, 2000.

ASTM D 1945-03, Standard Test Method for Analysis of Natural Gas by Gas Chromatography, approved May 10, 2003.

ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by Gas Chromatography, approved June 1, 2006.

ASTM E 1527-00, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, approved May 10, 2000. Vol. 11.04.

ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, approved September 10, 1995.

ASTM E 2121-09, Standard Practice for Installing Radon Mitigation Systems in Existing Low-Rise Residential Buildings, approved November 1, 2009.

ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion into Structures on Property Involved in Real Estate Transactions, approved March 1, 2008.

API. American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005-4070 (202) 682-8000.

**"BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic Biodegradation, Version 2.0 (January 2010)** 

Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD): Description and Use in Health Risk Assessments. Regulatory Toxicology and Pharmacology. 8, 471-486.

EPRI. Electric Power Research Institute. 3420 Hillview Avenue, Palo Alto, California 94304. (650) 855-2121.

Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soil in Illinois: Background PAHs, EPRI, Palo Alto<sub>7</sub> CA, We Energies, Milwaukee<sub>7</sub>  $WI_7$  and IEPA, Springfield<sub>7</sub> IL: 2004. 1011376.

"Reference Handbook for Site-Specific Assessment of Subsurface Vapor Intrusion to Indoor Air," Electric Power Research Institute (EPRI), Inc., Program No. 1008492,1008492 (March 2005).

GPO. Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20401, (202) 783-3238.

USEPA Guidelines for Carcinogenic Risk Assessment, 51 Fed. Reg. 33992-34003 (September 24, 1986).

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA Publication number SW-846 (Third Edition, Final Update IIIA, April 1998), as amended by Updates I, IIA, III, and IIIA (Document No. 955-001-00000-1).

"Methods for the Determination of Organic Compounds in Drinking Water", EPA Publication No. EPA/600/4-88/039 (December 1988 (Revised July 1991)).

"Methods for the Determination of Organic Compounds in Drinking Water, Supplement I", EPA Publication No. EPA/600/4-90/020 (July 1990).

"Methods for the Determination of Organic Compounds in Drinking Water, Supplement II", EPA Publication No. EPA/600/R-92/129 (August 1992).

"Methods for the Determination of Organic Compounds in Drinking Water, Supplement III", EPA Publication No. EPA/600/R-95/131 (August 1995).

"Guidance for Data Quality Assessment, Practical Methods for Data Analysis, EPA QA/G-9, QAOO Update," EPA/600/R-96/084 (July 2000). Available at www.epa.gov/quality/qs-docs/g9-final.pdf.

"Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site Using Basement and Sub-Slab Air Samples", EPA Publication No. EPA/600/R-05/147 (March 2006).

"Model Standards and Techniques for Control of Radon in New Residential Buildings" EPA Publication No. EPA/402/R-94/009 (March 1994).

"Radon Reduction Techniques for Existing Detached Houses: Technical Guidance (Third Edition) for Active Soil Depressurization Systems", EPA Publication No. EPA/625/R-93/011 (October 1993).

Illinois Environmental Protection Agency, 1021 N. Grand Ave East, Springfield, IL 6270162701, (217) 785-0830.

"A Summary of Selected Background Conditions for Inorganics in Soil", Publication No. IEPA/ENV/94-161, 161 (August 1994.1994).

IRIS. Integrated Risk Information System, National Center for Environmental Assessment, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS-190, Cincinnati, OH 45268, (513) 569-7254.

"Reference Dose (RfD): Description and Use in Health Risk Assessments", Background Document 1A (March 15, 1993).

"EPA Approach for Assessing the Risks Associated with Chronic Exposures to Carcinogens", Background Document 2 (January 17, 1992).

Johnson, Paul C. (2005). Identification of Application Specific Critical Inputs for the 1991 Johnson and Ettinger Vapor Intrusion Algorithm. Ground Water Monitoring and Remediation. 25(1), 63-78. Murray, Donald M. and Burmaster, David E. (1995). Residential Air Exchange Rates in the United States: Empirical and Estimated Parametric Distributions by Season and Climatic Region. Risk Analysis. 15(4), 459-465.

Nelson, D.W., and L.E. Sommers (1982). Total carbon, organic carbon, and organic matter. In: A.L. Page (ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Edition, pp. 539-579, American Society of Agronomy. Madison, WI.

NTIS. National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, (703) 487-4600.

"Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites," USEPA Office of Emergency and Remedial Response, OSWER 9285.6-10 (December 2002), PB 2003-104982.

"Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils," - OSWER Draft Guidance. EPA Publication No. EPA/530D-02/004 (November 2002).

"Exposures Factors Handbook, Vol. I: General Factors", EPA Publication No. EPA/600/P-95/002Fa (August 1997).

"Exposures Factors Handbook, Vol. II: Food Ingestion Factors", EPA Publication No. EPA/600/P-95/002Fb (August 1997).

"Exposures Factors Handbook, Vol. III: Activity Factors", EPA Publication No. EPA/600/P-95/002Fc (August 1997).

"Risk Assessment Guidance for Superfund, Vol. I: - Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors", OSWER Directive 9285.6-03 (March 1991).

"Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination Sites," EPA Publication No. EPA/600/8-85/002 (February 1985), PB 85-192219.

"Risk Assessment Guidance for Superfund, Volume I; Human Health Evaluation Manual (Part A)", Interim Final, EPA Publication No. EPA/540/1 89/002 (December-1989).

"Risk Assessment Guidance for Superfund, Volume I; Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment Interim Guidance", Draft (August 18, 1992).

"Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim-Final", EPA Publication No. EPA/540/R/99/005 (September 2001 July 2004).

"Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) Final", EPA Publication No. 540-R-070-002 (January 2009).

"Soil Screening Guidance: Technical Background Document", EPA Publication No. EPA/540/R-95/128, PB 96-963502 (May 1996).

"Soil Screening Guidance: User's Guide", EPA Publication No. EPA/540/R-96/018, PB 96-963505 (April 1996).

"Superfund Exposure Assessment Manual", EPA Publication No. EPA/540/1-88/001 (April 1988).

"Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites", OSWER Directive 9355.4-24 (December 2002).

"Users Guide for Evaluating Subsurface Vapor Intrusion into Buildings," EPA. EPA/68/W-02/33,33 (February 2004).

Polynuclear Aromatic Hydrocarbon Background Study, City of Chicago, <u>Illinois</u>, Tetra Tech Em Inc., 200 E. Randolph Drive, Suite 4700, Chicago, IL 60601, February 24, 2003.

Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soil in Illinois: Background PAHs, EPRI, Palo Alto, CA, We Energies, Milwaukee, WI, and IEPA, Springfield, IL: 2004. 1011376. EPRI, 3412 Hillview Avenue, Palo Alto, CA 94304, (800) 313-3774.

RCRA Facility Investigation Guidance, Interim Final, developed by USEPA (EPA 530/SW-89-031), 4 volumes (May 1989).

United States Environmental Protection Agency, Office of Environmental Information (2000). "Guidance for Data Quality Assessment, Practical Methods for Data Analysis," EPA QA/G-9, QAOO update. EPA Publication No. EPA/600/R-96-084. (Available online at www.epa.gov/oswer/riskassessment/ pdf/ucl.pdf).

United States Environmental Protection Agency, Office of Solid Waste and Emergency Response (2003). "Human Health Toxicity Values in Superfund Risk Assessments," OSWER Directive 9285.7-53. (Available online at http://www.epa.gov/ oswer/riskassessment/pdf/hhmemo.pdf).)

United States Environmental Protection Agency, Compendium of Methods for Determination of Toxic Organic Compounds in Ambient Air, Second Edition, EPA Publication No. EPA/625/R-96/010b, January <u>19991999</u>, available at http://www.epa.gov/ttnamtil/files/ambient/airtox/tocomp99.pdf.

United States Environmental Protection Agency, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 through Revision IVB (February 2007)\_ available at http://www.epa.gov/sw-846/main.htm.

United States Environmental Protection Agency, CFR Promulgated Test Methods, Methods 3C and 16, Technology Transfer Network, Emission Measurement Center, (2007) available at http://www.epa.gov/ttn/emc/promgate.html.

United States Environmental Protection Agency (2005). "Guidelines for Carcinogen Risk Assessment (2005)". U. S. Environmental Protection Agency, Washington, DC, EPA Publication No. EPA/630/P-03/001F, 2005. (Available onlineat http://cfpub.epa.gov/ncea/raf/recordisplay.cfm?deid=<u>116283).116283.)</u>

"Vapor Intrusion Pathway: A Practical Guide," Technical and Regulatory Guidance. Interstate Technology and Regulatory Council (January 2007).

 b) CFR (Code of Federal Regulations). Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (202)783-3238:

40 CFR 761 (1998).

c) This Section incorporates no later editions or amendments.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.220 Determination of Soil Saturation Limit

a) For any organic contaminant that has a melting point below  $30 \bullet \underline{C} \circ \underline{C}$ , the remediation objective for the outdoor inhalation exposure route developed under Tier 2 shall not exceed the soil saturation limit, as determined under subsection (c) of this Section.

b) For any organic contaminant that has a melting point below  $30 \stackrel{\circ}{\leftrightarrow} \stackrel{\circ}{\leftarrow} \stackrel{\circ}{\leftarrow}$ , the remediation objective under Tier 2 for the soil component of the groundwater ingestion exposure route shall not exceed the soil saturation limit, as determined under subsection (c) of this Section.

c) The soil saturation limit shall be:

1) The value listed in Appendix A, Table A for that specific contaminant; ----

2) A value derived from Equation S29 in Appendix C, Table A; or

3) A value derived from another method approved by the Agency.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.222 Determination of Soil Vapor Saturation Limit

a) For any volatile chemical, the soil gas remediation objective for the indoor and outdoor inhalation exposure routes developed under Tier 2 shall not exceed the soil vapor saturation limit, as determined under subsection (b) of this Section.

b) The soil vapor saturation limit shall be:

1) The value listed in Appendix A, Table K for that specific contaminant;

2) A value derived from Equation J&E5 in Appendix C, Table L; or

3) A value derived from another method approved by the Agency.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.225 Demonstration of Compliance with Soil and Groundwater Remediation Objectives

Compliance with soil and groundwater remediation objectives is achieved if each sample result does not exceed that respective remediation objective unless a person elects to proceed under subsections (c), (d) and (e) of this Section.

a) Compliance with groundwater remediation objectives developed under Subparts D through F and H through I shall be demonstrated by comparing the contaminant concentrations of discrete samples at each sample point to the applicable groundwater remediation objective. Sample points shall be determined by the program under which remediation is performed.

b) Unless the person elects to composite samples or average sampling results as provided in subsections (c) and (d) of this Section, compliance with soil remediation objectives developed under Subparts D through G and I shall be demonstrated by comparing the contaminant concentrations of discrete samples to the applicable soil remediation objective.

1) Except as provided in subsections (c) and (d) of this Section, compositing of samples is not allowed.

2) Except as provided in subsections (c) and (d) of this Section, averaging of sample results is not allowed.

3) Notwithstanding subsections (c) and (d) of this Section, compositing of samples and averaging of sample results is not allowed for the construction worker population.

4) The number of sampling points required to demonstrate compliance is determined by the requirements applicable to the program under which remediation is performed.

c) If a person chooses to composite soil samples or average soil sample results to demonstrate compliance relative to the soil component of the groundwater ingestion exposure route, the following requirements apply:

1) A minimum of two sampling locations for every 0.5 acre of contaminated area is required, with discrete samples at each sample location obtained at every two feet of depth, beginning at six inches below the ground surface for surface contamination and at the upper limit of contamination for subsurface contamination and continuing through the zone of contamination. Alternatively, a sampling method may be approved by the Agency based on an appropriately designed site-specific evaluation. Samples obtained at or below the water table shall not be used in compositing or averaging.

2) For contaminants of concern other than volatile organic contaminants chemicals:

A) Discrete samples from the same boring may be composited; or

B) Discrete sample results from the same boring may be averaged.

3) For volatile organic contaminants chemicals:

A) Compositing of samples is not allowed.

B) Discrete sample results from the same boring may be averaged.

4) Composite samples may not be averaged. An arithmetic average may be calculated for discrete samples collected at every two feet of depth through the zone of contamination as specified above in <u>Section 742.225</u> subsection (c)(1) of this Section.

d) If a person chooses to composite soil samples or average soil sample results to demonstrate compliance relative to the outdoor inhalation exposure route or ingestion exposure routes<u>route</u>, the following requirements apply:

1) A person shall submit a sampling plan for Agency approval, based upon a site-specific evaluation;

2) For volatile organic compounds chemicals, compositing of samples is not allowed; and

3) All samples shall be collected within the contaminated area-

4) Composite samples may not be averaged. Procedures specified in "Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites", USEPA Office of Emergency and Remedial Response, OSWER 9285.6-10 (December 2002), as incorporated by reference in Section 742.210, or an alternative procedure approved by the Agency, shall be used to determine sample averages.

e) When averaging under this Section, if no more than 15% of sample results are reported as "non-detect", "no contamination", "below detection limits", or similar terms, such results shall be included in the averaging calculations as one-half the reported analytical detection limit for the contaminant. However, when performing a test for normal or lognormal distribution for the purpose of calculating a 95% Upper Confidence Limit of the mean for a contaminant, a person may substitute for each non-detect value a randomly generated value between, but not including, zero and the reported analytical detection limit. If more than 15% of sample results are "non-detect", procedures specified in "Guidance for Data Quality Assessment, Practical Methods for Data Analysis, EPA QA/G-9, QA00 Update", EPA/600/R-96/084 (July 2000), as incorporated by reference in Section 742.210, or an alternative procedure approved by the Agency shall be used to address the non-detect values, or another statistically valid procedure approved by the Agency may be used to determine an average.

f) All soil samples collected after August 15, 2001,2001 shall be reported on a dry weight basis for the purpose of demonstrating compliance, with the exception of the TCLP and SPLP and the property pH.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.227 Demonstration of Compliance with Soil Gas Remediation Objectives for the Outdoor and Indoor Inhalation Exposure Routes

Compliance shall be demonstrated by comparing the contaminant concentrations of discrete samples at each sample point to the applicable soil gas remediation objective. As specified in Section 742.510(c), the soil gas remediation objectives for the outdoor inhalation exposure route are contained in Appendix B, Table G. As specified in Section 742.515, the soil gas remediation objectives for the indoor inhalation exposure route are contained in Appendix B, Tables H and I. This Section 742.227 applies to exterior soil gas samples or near-slab samples collected outside a building. Proposals to use sub-slab soil gas data for the indoor inhalation exposure route shall follow Section 742.935(c).

a) Sample points shall be determined by the program under which remediation is performed.

b) When collecting soil gas samples:

1) Use rigid-wall tubing made of nylon or Teflon(r) or other material approved by the Agency;

2) Use gas-tight, inert containers to hold the sample. For light sensitive or halogenated volatile chemicals, these containers shall be opaque or dark-colored;

3) Purge three volumes before obtaining each discrete soil gas sample;

4) Use a helium tracer or other leak apparatus detection system approved by the Agency; and

5) Limit the flow rate to 200 ml/min.

c) Soil gas samples shall be analyzed using a National Environmental Laboratory Accreditation Program (NELAP) certified laboratory.

d) Soil gas remediation objectives shall be compared to concentrations of soil gas collected at a depth at least 3 feet below ground surface and above the saturated zone.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART C: EXPOSURE ROUTE EVALUATIONS

Section 742.305 Contaminant Source and Free Product Determination

No exposure route shall be excluded from consideration relative to a contaminant of concern unless the following requirements are met:

 The sum of the concentrations of all organic contaminants of concern shall not exceed the attenuation capacity of the soil as determined under Section 742.215;

b) The concentrations of any organic contaminants of concern remaining in the soil shall not exceed the soil saturation limit as determined under Section 742.220;

c) Any soil which contains contaminants of concern shall not exhibit any of the characteristics of reactivity for hazardous waste as determined under 35 Ill. Adm. Code 721.123;

d) Any soil which contains contaminants of concern shall not exhibit a pH less than or equal to 2.0 or greater than or equal to 12.5, as determined by SW-846 Method 9040B: pH Electrometric for soils with 20% or greater aqueous (moisture) content or by SW-846 Method 9045C: Soil pH for soils with less than 20% aqueous (moisture) content as incorporated by reference in Section 742.210;

e) Any soil which contains contaminants of concern in the following list of inorganic chemicals or their salts shall not exhibit any of the characteristics of toxicity for hazardous waste as determined by 35 Ill. Adm. Code 721.124: arsenic, barium, cadmium, chromium, lead, mercury, selenium or silver; and

f) If contaminants of concern include polychlorinated biphenyls (PCBs), the concentration of any PCBs in the soil shall not exceed 50 parts per million as determined by SW-846 Methods; and

g) The concentration of any contaminant of concern in soil gas shall not exceed 10% of its Lower Explosive Limit (LEL) as measured by a hand held combustible gas indicator that has been calibrated to manufacturer specifications.

(Source: Amended at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_\_)

Section 742.310 Outdoor Inhalation Exposure Route

The outdoor inhalation exposure route may be excluded from consideration if:

a) The following requirements in subsections subsection (a)(1) or (a)(2) are met:

1) An approved engineered barrier is in place that meets the requirements of Subpart K; or

2) The only contaminants of concern are benzene, toluene, ethylbenzene, and total xylenes, and a demonstration of active biodegradation has been made for benzene, toluene, ethylbenzene, and total xylenes such that no outdoor inhalation exposure will occur. This demonstration shall be submitted to the Agency for review and approval;

bab) The requirements of Sections 742.300 and 742.305 are met;

b) An approved engineered barrier is in place that meets the requirements of Subpart K;

c) Safety worker precautions for the construction worker are taken if the Tier 1 construction worker remediation objectives are exceeded; and

d) An institutional control, in accordance with Subpart J, will be placed on the property.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.312 Indoor Inhalation Exposure Route

The indoor inhalation exposure route may be excluded from consideration if:

a) None of the contaminants of concern are listed on Appendix A, Table J and none of the contaminants of concern are volatile chemicals, as defined in Section 742.200; or

b) The following requirements in subsections (b)(1)(A) - or (B) or (C) - and (b)(2) and (b)(3) are met:

1) Exclusion options when the contaminants of concern are volatile chemicals:

A) No building or man-made pathway exists or will be placed above the contaminated soil gas or groundwater; or

B) An approved building control technology is in place or will be placed that meets the requirements of Subpart L; or

C) If the contaminants of <u>concernsconcern</u> are benzene, toluene, ethylbenzene, and total xylenes only, a demonstration of active biodegradation has been made for benzene, toluene, ethylbenzene, and total xylenes such that no indoor inhalation exposure will occur. This demonstration shall be submitted to the Agency for review and approval;

2) The requirements of Sections 742.300 and 742.305 are met; and

3) An institutional control, in accordance with Subpart J, will be placed on the property.

(Source: Added at 36 Ill. Reg. \_\_, effective \_\_\_\_\_)

SUBPART D: DETERMINING AREA BACKGROUND

Section 742.405 Determination of Area Background for Soil

a) Soil sampling results shall be obtained for purposes of determining area background levels in accordance with the following procedures:

1) For volatile organic contaminants chemicals, sample results shall be based on discrete samples;

2) Unless an alternative method is approved by the Agency, for contaminants other than volatile organic contaminants chemicals, sample results shall be based on discrete samples or composite samples. If a person elects to use composite samples, each 0.5 acre of the area to be sampled shall be divided into quadrants and 5 aliquots of equal volume per quadrant shall be composited into 1 sample;

3) Samples shall be collected from similar depths and soil types, which shall be consistent with the depths and soil types in which maximum levels of contaminants are found in the areas of known or suspected releases; and

4) Samples shall be collected from areas of the site or adjacent to the site that are unaffected by known or suspected releases at or from the site. If the sample results show an impact from releases at or from the site, then the sample results shall not be included in determining area background levels under this Part.

b) Area background shall be determined according to one of the following approaches:

1) Statewide Area Background Approach:

A) The concentrations of inorganic chemicals in background soils listed in Appendix A, Table G may be used as the upper limit of the area background concentration for the site. The first column to the right of the chemical name presents inorganic chemicals in background soils for counties within Metropolitan Statistical Areas. Counties within Metropolitan Statistical Areas are identified in Appendix A, Table G, Footnote a. Sites located in counties outside Metropolitan Statistical Areas shall use the concentrations of inorganic chemicals in background soils shown in the second column to the right of the chemical name.
B) Soil area background concentrations determined according to this statewide area background approach shall be used as provided in Section 742.415(b) of this Part. For each parameter whose sampling results demonstrate concentrations above those in Appendix A, Table G, the person shall develop appropriate soil remediation objectives in accordance with this Part, or may determine area background in accordance with subsection (b)(2) of this Section.

2) A statistically valid approach for determining area background concentrations appropriate for the characteristics of the data set, and approved by the Agency.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART E: TIER 1 EVALUATION

Section 742.500 Tier 1 Evaluation Overview

a) A Tier 1 evaluation compares the concentration of each contaminant of concern detected at a site to the baseline remediation objectives provided in Appendix B, Tables A, B, C, D, and E, G, H and I. Use of Tier 1 remediation objectives requires only limited site-specific information: concentrations of contaminants of concern, groundwater classification, land use classification, and, if appropriate, soil pH. (See Appendix B, Illustration A.)

b) Although Tier 1 allows for differentiation between residential and industrial/commercial property use of a site, an institutional control under Subpart J is required where remediation objectives are based on an industrial/commercial property use.

c) Any given exposure route is not a concern if the concentration of each contaminant of concern detected at the site is below the Tier 1 value of that given route. In such a case, no further evaluation of that route is necessary.

(Source: Amended at 36 Ill. Reg. \_, effective \_\_\_\_\_ )

Section 742.505 Tier 1 Soil, Soil Gas and Groundwater Remediation Objectives

a) Soil

1) Outdoor Inhalation Exposure Route

A) The Tier 1 soil remediation objectives for this exposure route based upon residential property use are listed in Appendix B, Table A.

B) The Tier 1 soil remediation objectives for this exposure route based upon industrial/commercial property use are listed in Appendix B, Table B. Soil remediation objective determinations relying on this table require use of institutional controls in accordance with Subpart J.

C) For this exposure route, it is acceptable to determine compliance by meeting either the soil or soil gas remediation objectives.

2) Ingestion Exposure Route

A) The Tier 1 soil remediation objectives for this exposure route based upon residential property use are listed in Appendix B, Table A.

B) The Tier 1 soil remediation objectives for this exposure route based upon industrial/commercial property use are listed in Appendix B, Table B. Soil remediation objective determinations relying on this table require use of institutional controls in accordance with Subpart J.

3) Soil Component of the Groundwater Ingestion Route

A) The Tier 1 soil remediation objectives for this exposure route based upon residential property use are listed in Appendix B, Table A.

B) The Tier 1 soil remediation objectives for this exposure route based upon industrial/commercial property use are listed in Appendix B, Table B.

C) The pH-dependent Tier 1 soil remediation objectives for identified ionizable organics or inorganics for the soil component of the groundwater ingestion exposure route (based on the total amount of contaminants present in the soil sample results and groundwater classification) are provided in Appendix B, Tables C and D.

D) Values used to calculate the Tier 1 soil remediation objectives for this exposure route are listed in Appendix B, Table F.

4) Evaluation of the dermal contact with soil exposure route is not required under Tier 1.

- b) Soil Gas
- 1) Outdoor Inhalation Exposure Route

A) The Tier 1 soil gas remediation objectives for this exposure route based upon residential property use are listed in Appendix B, Table G.

B) The Tier 1 soil gas remediation objectives for this exposure route based upon industrial/commercial property use, including the construction worker population, are listed in Appendix B, Table G. Soil gas remediation objective determinations relying on an industrial/commercial scenario require use of institutional controls in accordance with Subpart J.

C) For this exposure route, it is acceptable to determine compliance by meeting either the soil or soil gas remediation objectives.

2) Indoor Inhalation Exposure Route

A) The Tier 1 soil gas remediation objectives for this exposure route are listed in Appendix B, Tables H and I.

B) The Tier 1 soil gas remediation objectives for this exposure route are based on a default water-filled soil porosity value of 0.15 cm3/cm3.

C) Appendix B, Table H shall be used when soil or groundwater contamination is within 5 feet, vertically or horizontally, of an existing or potential building or man-made pathway. In this scenario, the mode of contaminant transport is both diffusion and advection, which sets the Qsoil value at 83.33 cm3/sec. D) Appendix B, Table I shall be used when soil and groundwater contamination are more than 5 feet, vertically and horizontally, from an existing or potential building or man-made pathway. In this scenario, the mode of contaminant transport is diffusion only, which sets the Qsoil value at 0.0 cm3/sec. Soil gas remediation objective determinations relying on this table require use of institutional controls in accordance with Subpart J.

E) To determine whether the Qsoil value can be set at 0.0 cm3/sec, the site evaluator shall demonstrate that soil and groundwater within 5 feet, vertically and horizontally, of an existing or potential building or man-made pathway meet the Tier 1 remediation objectives for residential property listed in Appendix B, Table A, and the Tier 1 remediation objectives for Class I groundwater listed in Appendix B, Table E, respectively.

b-c) Groundwater

1) The Tier 1 groundwater remediation objectives for the groundwater component of the groundwater ingestion route are listed in Appendix B, Table E.

2) The Tier 1 groundwater remediation objectives for this exposure route are given for Class I and Class II groundwaters, respectively.

3) The evaluation of 35 Ill. Adm. Code 620.615 regarding mixtures of similaracting chemicals shall be considered satisfied for Class I groundwater at the point of human exposure if:

A) No more than one similar-acting noncarcinogenic chemical as listed in Appendix A, Table E is detected in the groundwater at the site; and

B) No carcinogenic contaminant of concern as listed in Appendix A, Table I is detected in any groundwater sample associated with the site, using analytical procedures capable of achieving either the 1 in 1,000,000 cancer risk concentration or the ADL, whichever is greater.

4) If the conditions of subsection (c)(3)(b)(3) of this Section are not met, the Class I groundwater remediation objectives set forth in Appendix B, Table E shall be corrected for the cumulative effect of mixtures of similar-acting chemicals using the following methodologies:

A) For noncarcinogenic chemicals, the methodologies set forth at Section 742.805(c) or Section 742.915(h) shall be used; and

B) For carcinogenic chemicals, the methodologies set forth at Section 742.805(d) or Section 742.915(h) shall be used.

5) For the groundwater component of the indoor inhalation exposure route, the Tier 1 groundwater remediation objectives are listed in Appendix B, Tables H and I.

A) The Tier 1 groundwater remediation objectives for this exposure route are based on a default water-filled soil porosity value of 0.15 cm3/cm3.

B) Appendix B, Table H shall be used when soil or groundwater contamination is within 5 feet, vertically and horizontally, of an existing or potential building or man-made pathway. In this scenario, the mode of contaminant transport is both diffusion and advection, which sets the Qsoil value at 83.33 cm3/sec.

C) Appendix B, Table I shall be used when soil and groundwater contamination are more than 5 feet, vertically and horizontally, from an existing or potential building or man-made pathway. In this scenario, the mode of contaminant transport is diffusion only, which sets the Qsoil value at 0.0 cm3/sec. Groundwater remediation objective determinations relying on this table require use of institutional controls in accordance with Subpart J.

D) To determine whether the Qsoil value can be set at 0.0 cm3/sec, the site evaluator shall demonstrate that soil and groundwater within 5 feet, vertically and horizontally, of an existing or potential building or man-made pathway meet the Tier 1 remediation objectives for residential property listed in Appendix B, Table A, and the Tier 1 remediation objectives for Class I groundwater listed in Appendix B, Table E, respectively.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.510 Tier 1 Remediation Objectives Tables for the Ingestion, Outdoor Inhalation and Soil Component of the Groundwater Ingestion Exposure Routes

a) Soil remediation objectives are listed in Appendix B, Tables A, B, C and D.

1) Appendix B, Table A is based upon residential property use.

A) The first column to the right of the chemical name lists soil remediation objectives for the soil ingestion exposure route.

B) The second column lists the soil remediation objectives for the outdoor inhalation exposure route.

C) The third and fourth columns list soil remediation objectives for the soil component of the groundwater ingestion exposure route for the respective classes of groundwater:

- i) Class I groundwater; and
- ii) Class II groundwater.

D) The final column lists the Acceptable Detection Limit (ADL), only wherewhen applicable.

2) Appendix B, Table B is based upon industrial/commercial property use.

A) The first and third columns to the right of the chemical name list the soil remediation objectives for the soil ingestion exposure route based on two receptor populations:

- i) Industrial/commercial; and
- ii) Construction worker.

B) The second and fourth columns to the right of the chemical name list the soil remediation objectives for the outdoor inhalation exposure route based on two receptor populations:

i) Industrial/commercial; and

ii) Construction worker.

C) The fifth and sixth columns to the right of the chemical name list the soil remediation objectives for the soil component of the groundwater ingestion exposure route for two classes of groundwater:

i) Class I groundwater; and

ii) Class II groundwater.

D) The final column lists the acceptable detection limit (ADL), only wherewhen applicable.

3) Appendix B, Tables C and D set forth pH specific soil remediation objectives for inorganic and ionizing organic chemicals for the soil component of the groundwater ingestion route.

A) Table C sets forth remediation objectives based on Class I groundwater and Table D sets forth remediation objectives based on Class II groundwater.

B) The first column in Tables C and D lists the chemical names.

C) The second through ninth columns to the right of the chemical names list the pH based soil remediation objectives.

4) For the inorganic chemicals listed in Appendix B, Tables A and B, the soil component of the groundwater ingestion exposure route shall be evaluated using TCLP (SW-846 Method 1311) or SPLP (SW-846 Method 1312), incorporated by reference at Section 742.210 unless a person chooses to evaluate the soil component on the basis of the total amount of contaminant in a soil sample result in accordance with subsection (a)(5) of this Section.

5) For those inorganic and ionizing organic chemicals listed in Appendix B, Tables C and D, if a person elects to evaluate the soil component of the groundwater ingestion exposure route based on the total amount of contaminant in a soil sample result (rather than TCLP or SPLP analysis), the person shall determine the soil pH at the site and then select the appropriate soil remediation objectives based on Class I and Class II groundwaters from Tables C and D, respectively. If the soil pH is less than 4.5 or greater than 9.0, then Tables C and D cannot be used.

6) Unless one or more exposure routes are excluded from consideration under Subpart C, the most stringent soil remediation objective of the exposure routes (i.e., soil ingestion exposure route, outdoor inhalation exposure route, and soil component of the groundwater ingestion exposure route) shall be compared to the concentrations of soil contaminants of concern measured at the site. When using Appendix B, Table B to select soil remediation objectives for the ingestion exposure route and outdoor inhalation exposure routes, the remediation objective shall be the more stringent soil remediation objective of the industrial/commercial populations and construction worker populations.

7) Confirmation sample results may be averaged or soil samples may be composited in accordance with Section 742.225.

8) If a soil remediation objective for a chemical is less than the ADL, the ADL shall serve as the soil remediation objective.

B) Groundwater remediation objectives for the groundwater component of the groundwater ingestion exposure route are listed in Appendix B, Table E.
 However, Appendix B, Table E must be corrected for cumulative effect of mixtures of similar-acting noncarcinogenic chemicals as set forth in Section Sections - 742.505(c)(3) and (c)(4).

1) The first column to the right of the chemical name lists groundwater remediation objectives for Class I groundwater, and the second column lists the groundwater remediation objectives for Class II groundwater.

2) To use Appendix B, Table E of this Part, the 35 Ill. Adm. Code 620 classification for groundwater at the site shall be determined. The concentrations of groundwater contaminants of concern at the site are compared to the applicable Tier 1 groundwater remediation objectives for the groundwater component of the groundwater ingestion exposure route in Appendix B, Table E.

c) Soil gas remediation objectives for the outdoor inhalation exposure route are listed in Appendix B, Table G.

1) The first column to the right of the chemical name lists the soil gas remediation objectives for residential populations.

2) The second and third columns to the right of the chemical names list the soil gas remediation objectives for the outdoor inhalation exposure route based on two receptor populations:

A) Industrial/commercial; and

B) Construction worker.

**edd**) For contaminants of concern not listed in Appendix B, Tables A, B and , E, and G, a person may request site-specific remediation objectives from the Agency or propose site-specific remediation objectives in accordance with 35 Ill. Adm. Code 620, Subpart I of this Part, or both.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.515 Tier 1 Remediation Objectives Tables for the Indoor Inhalation Exposure Route

a) When the mode of contaminant transport is both diffusion and advection as described in Section 742.505 (i.e., soil or groundwater contamination is within 5 feet of an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B, Table H shall be used.

1) The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.

2) The second column lists the soil gas remediation objectives for industrial/commercial receptors.

3) The third column lists the groundwater remediation objectives for residential receptors.

4) The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.

b) When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B, Table I shall be used. Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.

1) The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.

2) The second column lists the soil gas remediation objectives for industrial/commercial receptors.

3) The third column lists the groundwater remediation objectives for residential receptors.

4) The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.

c) If using Appendix B, Table H, compliance is determined by meeting either the soil gas remediation objectives or the groundwater remediation objectives.

d) If using Appendix B, Table I, compliance is determined by meeting both the soil gas remediation objectives and the groundwater remediation objectives.

e) For volatile chemicals not listed in Appendix B, Table H or I, a person may request site-specific remediation objectives from the Agency or propose site-specific remediation objectives in accordance with Subpart I of this Part, or both.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART F: TIER 2 GENERAL EVALUATION

Section 742.600 Tier 2 Evaluation Overview

a) Tier 2 remediation objectives are developed through the use of equations which allow site-specific data to be used. (See Appendix C, Illustrations A and B.) The equations identified in Appendix C, Tables A, and C, and L may be used to develop Tier 2 remediation objectives.

b) Tier 2 evaluation is only required for contaminants of concern and corresponding exposure routes (except where excluded from further consideration under Subpart C) exceeding the Tier 1 remediation objectives. When conducting Tier 2 evaluations, the values used in the calculations must have the appropriate units of measure as identified in Appendix C, Tables B, and D, and M.

c) Any development of remediation objectives using site-specific information or equations outside the Tier 2 framework shall be evaluated under Tier 3.

d) Any development of a remediation objective under Tier 2 shall not use a target hazard quotient greater than one at the point of human exposure or a target cancer risk greater than 1 in 1,000,000 at the point of human exposure.

e) In conducting a Tier 2 evaluation, the following conditions shall be met:

1) For each discrete sample, the total soil contaminant concentration of either a single contaminant or multiple contaminants of concern shall not exceed the attenuation capacity of the soil as provided in Section 742.215.

2) Remediation objectives for noncarcinogenic compounds which affect the same target organ, organ system or similar mode of action shall meet the requirements of Section 742.720.

3) The soil remediation objectives based on the outdoor inhalation exposure route and the soil component of the groundwater ingestion exposure routes shall not exceed the soil saturation limit as provided in Section 742.220.

4) The soil gas remediation objectives based on the indoor and outdoor inhalation exposure routes shall not exceed the soil vapor saturation limit as provided in Section 742.222.

f) Tier 2 remediation objectives for the indoor inhalation exposure route shall be calculated for either soil gas or groundwater if a Qsoil value of 83.33 cm3/sec is used.

g) Tier 2 remediation objectives for the indoor inhalation exposure route shall be calculated for both soil gas and groundwater if a Qsoil value of 0.0 cm3/sec is used.

f) If the calculated Tier 2 soil remediation objective for an applicable exposure route is more stringent than the corresponding Tier 1 remediation objective, then the Tier 1 remediation objective applies.

g)i) If the calculated Tier 2 soil remediation objective for an exposure route is more stringent than the Tier 1 soil remediation objective(s)objectives for the other exposure routes, then the Tier 2 calculated soil remediation objective applies and Tier 2 soil remediation objectives for the other exposure routes are not required.

h)j) If the calculated Tier 2 soil remediation objective is less stringent than one or more of the soil remediation objectives for the remaining exposure routes, then the Tier 2 values are calculated for the remaining exposure route(s)routes and the most stringent Tier 2 calculated value applies.

k) If a contaminant has both carcinogenic and noncarcinogenic effects for any applicable exposure route or receptor, remediation objectives shall be calculated for each effect and the more stringent remediation objective shall apply. The toxicological-specific information is described in Section 742.705(d).

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.605 Land Use

a) Present and post-remediation land use is evaluated in a Tier 2 evaluation. Acceptable exposure factors for the Tier 2 evaluation for residential, industrial/commercial, and construction worker populations are provided in the far right column of Appendix C, Tables B, and D, and M. Use of exposure factors different from those in Appendix C, Tables B, and D, and M must be approved by the Agency as part of a Tier 3 evaluation.

b) If a Tier 2 evaluation is based on an industrial/commercial property use, then:

1) Construction worker populations shall also be evaluated, except for the indoor inhalation exposure route; and

2) Institutional controls are required in accordance with Subpart J.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.610 Chemical and Site Properties

a) Physical and Chemical Properties of Contaminants

Tier 2 evaluations require information on the physical and chemical properties of the contaminants of concern. The physical and chemical properties used in a Tier 2 evaluation are contained in Appendix C, Table E. If the site has contaminants not included in this table, a person may request the Agency to provide the applicable physical and chemical input values or may propose input values under Subpart I. If a person proposes to apply values other than those in Appendix C, Table E, or those provided by the Agency, the evaluation shall be considered under Tier 3.

b) Soil and Groundwater Parameters

1) A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B, and D, and M. If a person proposes to vary site-specific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.

2) To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unit(s)units</u> being evaluated. For example, if evaluating the soil component of the groundwater ingestion exposure route, two samples from the boring will be required:

A) A sample of the predominant soil type for the vadose zone; and

B) A sample of the predominant soil type for the saturated zone.

3) A site-specific SSL dilution factor (used in developing soil remediation objectives based upon the protection of groundwater) may be determined by substituting site information in Equation S22 in Appendix C, Table A. To make this demonstration, a minimum of three monitoring wells shall be used to determine the hydraulic gradient. As an alternative, the default dilution factor value listed in Appendix C, Table B may be used. If monitoring wells are used to determine the hydraulic gradient, the soil taken from the borings shall be visually inspected to ensure there are no significant differences in the stratigraphy. If there are similar soil types in the field, one boring shall be used to determine the site-specific physical soil parameters. If there are significant differences, all of the borings shall be evaluated before determining the site-specific physical soil parameters for the site.

4) Not all of the parameters identified in Appendix C, Tables B, and D, and M need to be determined on a site-specific basis. A person may choose to collect partial site-specific information and use default values as listed in Appendix C, Tables B, and D, and M for the rest of the parameters.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_) SUBPART G: TIER 2 SOIL AND SOIL GAS EVALUATION Section 742.700 Tier 2 Soil Evaluation Overview

a) Tier 2 remediation objectives are developed through the use of models which allow site-specific data to be considered. Appendix C, Tables A, and C, and L list equations that shall be used under a Tier 2 evaluation to calculate soil remediation objectives prescribed by SSL, and RBCA, and the modified J&E models, respectively. (See also Appendix C, Illustration A.)

b) Appendix C, Table A lists equations that are used under the SSL model.(See also Appendix C, Illustration A.) The SSL model has equations to evaluate the following human exposure routes:

1) Soil ingestion exposure route;

2) Outdoor Inhalation exposure route for:; and

A) Organic contaminants;

B) Fugitive dust; and

3) Soil component of the groundwater ingestion exposure route.

c) Evaluation of the dermal exposure route is not required under the SSL model.

d) Appendix C, Table C lists equations that are used under the RBCA model. (See also Appendix C, Illustration A.) The RBCA model has equations to evaluate human exposure based on the following:

1) The combined exposure routes of outdoor inhalation of vapors and particulates, soil ingestion and dermal contact with soil;

2) The ambient vapor inhalation (outdoor) outdoor inhalation exposure route from subsurface soils;

3) Soil component of the groundwater ingestion route; and

<u>4)</u> <u>Groundwater ingestion exposure route.</u>

e) Appendix C, Table L lists equations that are used under the modified J&E model. The modified J&E model has equations to evaluate human exposure by the indoor inhalation exposure route. The modified model allows for the development of soil gas remediation objectives.

f) c) The equations in either Appendix C, Table A, or C, or L may be used to calculate remediation objectives for each contaminant of concern under Tier 2, if the following requirements are met:

1) The Tier 2 soil or soil gas remediation objectives for the ingestion and outdoor inhalation exposure routes shall use the applicable equations from the same approach (i.e., SSL equations in Appendix C, Table C). For the indoor inhalation exposure route, only the J&E equations can be used.

2) The equations used to calculate soil remediation objectives for the soil component of the groundwater ingestion exposure route are not dependent on the approach utilized to calculate soil remediation objectives for the other exposure routes. For example, it is acceptable to use the SSL equations for calculating Tier 2 soil remediation objectives for the ingestion and outdoor inhalation exposure routes, and the RBCA equations for calculating Tier 2 soil remediation of the groundwater ingestion exposure route.

3) Combining equations from Appendix C, Tables A, and C, and L to form a new model is not allowed. In addition, Appendix C, Tables A, and C, and L must use their own applicable parameters identified in Appendix C, Tables B, and D, and M, respectively.

g) f) In calculating soil or soil gas remediation objectives for industrial/commercial property use, applicable calculations shall be performed twice: once using industrial/commercial population default values and once using construction worker population default values. The more stringent soil or soil gas remediation objectives derived from these calculations must be used for further Tier 2 evaluations. The indoor inhalation exposure route does not apply to the construction worker population.

h) -g) Tier 2 data sheets provided by the Agency shall be used to present calculated Tier 2 remediation objectives, if required by the particular program for which remediation is being performed.

i) h) The RBCA equations which rely on the parameter Soil Water Sorption Coefficient (ks) can only be used for ionizing organics and inorganics by substituting values for ks from Appendix C, Tables I and J, respectively. This will also require the determination of a site-specific value for soil pH.

j) For the outdoor inhalation exposure route, it is acceptable to use either <u>Section</u> 742.710 to develop a soil remediation objective or <u>Section</u> 742.712 to develop a soil gas remediation objective to determine compliance with the pathway.

(Source: Amended at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_\_)

Section 742.705 Parameters for Soil Remediation Objective Equations

a) Appendix C, Tables B, and D, and M list the input parameters for the SSL, and RBCA, and J&E equations, respectively. The first column lists each symbol as it is presented in the equation. The next column defines the parameters. The third column shows the units for the parameters. The fourth column identifies where information on the parameters can be obtained (i.e., field measurement, applicable equation(s)equations, reference source, or default value). The last column identifies how the parameters can be generated.

## b) Default Values

Default values are numerical values specified for use in the Tier 2 equations. The fourth column of Appendix C, Tables B, and D, and M denotes if the default values are from the SSL model, RBCA model, the modified J&E model or some other source. The last column of Appendix C, Tables B, and D, and M lists the numerical values for the default values used in the SSL, and RBCA, and J&E equations, respectively.

c) Site-specific Information

Site-specific information is a parameter measured, obtained, or determined from the site to calculate Tier 2 remediation objectives. The fourth column of Appendix C, Tables B, and D, and M identifies those site-specific parameters that may require direct field measurement. For some parameters, numerical default inputs have been provided in the last column of Appendix C, Tables B, and D, and M to substitute for site-specific information. In some cases, information on the receptor or soil type is required to select the applicable numerical default inputs. Site-specific information includes:

1) Physical soil parameters identified in Appendix C, Table F. The second column identifies the location where the sample is to be collected. Acceptable methods for measuring or calculating these soil parameters are identified in the last column of Appendix C, Table F;

2) Institutional controls or engineered barriers, pursuant to Subparts J and K, describe applicable institutional controls and engineered barriers under a Tier 2 evaluation; and

- 3) Land use classification
- d) Toxicological-specific Information

1) Toxicological-specific information is used to calculate Tier 2 remediation objectives for the following parameters, if applicable:

A) Oral Chronic Reference Dose (RfDo, expressed in mg/kg-d);

B) Oral Subchronic Reference Dose (RfDs, expressed in mg/kg-d, shall be used for construction worker remediation objective calculations);

C) Oral Slope Factor (SFo, expressed in (mg/kg-d)-1);

D) Inhalation Unit Risk Factor (URF expressed in (?ug/m3)-1);

E) Inhalation Chronic Reference Concentration (RfC, expressed in mg/m3);

F) Inhalation Subchronic Reference Concentration (RfCs, expressed in mg/m3, shall be used for construction worker remediation objective calculations);

G) Inhalation Chronic Reference Dose (RfDi, expressed in mg/kg-d);

H) Inhalation Subchronic Reference Dose (RfDis, expressed in mg/kg-d, shall be used for construction worker remediation objective calculations); and

Inhalation Slope Factor (SFi, expressed in (mg/kg-d)-1);

2) Toxicological information can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210, or the program under which the remediation is being performed.

 chemical-specific Information Chemical-specific information used to calculate Tier 2 remediation objectives is listed in Appendix C, Table E.

f) Calculations

Calculating numerical values for some parameters requires the use of equations listed in Appendix C, <u>TableTables</u> A, <u>or</u> C, and L. The parameters that are calculated are listed in Appendix C, Tables B, <u>and</u> D, and M.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.710 SSL Soil Equations

a) This Section sets forth the equations and parameters used to develop Tier
 2 soil remediation objectives for the three exposure routes using the SSL approach.

b) Soil Ingestion Exposure Route

1) Equations S1 through S3 form the basis for calculating Tier 2 remediation objectives for the soil ingestion exposure route using the SSL approach. Equation S1 is used to calculate soil remediation objectives for noncarcinogenic contaminants. Equations S2 and S3 are used to calculate soil remediation objectives for carcinogenic contaminants for residential populations and industrial/commercial and construction worker populations, respectively.

2) For Equations S1 through S3, the SSL default values cannot be modified with site-specific information.

c) Outdoor Inhalation Exposure Route

1) Equations S4 through S16, S26 and S27 are used to calculate Tier 2 soil remediation objectives for the outdoor inhalation exposure route using the SSL approach. To address this exposure route, organic contaminants and mercury must be evaluated separately from fugitive dust using their own equations set forth in subsections (c)(2) and (c)(3) of this Section, respectively.

2) Organic Contaminants

A) Equations S4 through S10 are used to calculate Tier 2 soil remediation objectives for organic contaminants and mercury based on the outdoor inhalation exposure route. Equation S4 is used to calculate soil remediation objectives for noncarcinogenic organic contaminants in soil for residential and industrial/commercial populations. Equation S5 is used to calculate soil remediation objectives for noncarcinogenic organic contaminants and mercury in soil for construction worker populations. Equation S6 is used to calculate soil remediation objectives for carcinogenic organic contaminants in soil for residential and industrial/commercial populations. Equation S7 is used to calculate soil remediation objectives for carcinogenic organic contaminants in soil for construction worker populations. Equations S8 through S10, S27 and S28 are used for calculating numerical values for some of the parameters in Equations S4 through S7. B) For Equation S4, a numerical value for the Volatilization Factor (VF) can be calculated in accordance with subsection (c)(2)(F) of this Section. The remaining parameters in Equation S4 have either SSL default values listed in Appendix C, Table B or toxicological-specific information (i.e., RfC), which can be obtained <u>from IRIS</u> by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

C) For Equation S5, a numerical value for the Volatilization Factor adjusted for Agitation (VF') can be calculated in accordance with subsection (c)(2)(G) of this Section. The remaining parameters in Equation S5 have either SSL default values listed in Appendix C, Table B or toxicological-specific information (i.e., RfC), which can be obtained <u>from IRIS</u> by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

D) For Equation S6, a numerical value for VF can be calculated in accordance with subsection (c)(2)(F) of this Section. The remaining parameters in Equation S6 have either default values listed in Appendix C, Table B or toxicological-specific information (i.e., URF), which can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

E) For Equation S7, a numerical value for VF' can be calculated in accordance with subsection (c)(2)(G) of this Section. The remaining parameters in Equation S7 have either default values listed in Appendix C, Table B or toxicological-specific information (i.e., URF), which can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

F) The VF can be calculated for residential and industrial/commercial populations using one of the following equations based on the information known about the contaminant source and receptor population:

i) Equation S8, in conjunction with Equation S10, is used to calculate VF assuming an infinite source of contamination; or

ii) If the area and depth of the contaminant source are known or can be estimated reliably, mass limit considerations may be used to calculate VF using Equation S26.

G) The VF' can be calculated for the construction worker populations using one of the following equations based on the information known about the contaminant source:

i) Equation S9 is used to calculate VF' assuming an infinite source of contamination; or

ii) If the area and depth of the contaminant source are known or can be estimated reliably, mass limit considerations may be used to calculate VF' using Equation S27.

3) Fugitive Dust

A) Equations S11 through S16 are used to calculate Tier 2 soil remediation objectives using the SSL fugitive dust model for the outdoor inhalation exposure route. Equation S11 is used to calculate soil remediation objectives for noncarcinogenic contaminants in fugitive dust for residential and industrial/commercial populations. Equation S12 is used to calculate soil remediation objectives for noncarcinogenic contaminants in fugitive dust for construction worker populations. Equation S13 is used to calculate soil remediation objectives for carcinogenic contaminants in fugitive dust for residential and industrial/commercial populations. Equation S14 is used to calculate soil remediation objectives for carcinogenic contaminants in fugitive dust for construction worker populations. Equations S15 and S16 are used for calculating numerical quantities for some of the parameters in Equations S11 through S14.

B) For Equation S11, a numerical value can be calculated for the Particulate Emission Factor (PEF) using Equation S15. This equation relies on various input parameters from a variety of sources. The remaining parameters in Equation S11 have either SSL default values listed in Appendix C, Table B or toxicologicalspecific information (i.e., RfC), which can be obtained <u>from IRIS</u> by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

C) For Equation S12, a numerical value for the Particulate Emission Factor for Construction Worker (PEF') can be calculated using Equation S16. The remaining parameters in Equation S12 have either SSL default values listed in Appendix C, Table B or toxicological-specific information (i.e., RfC), which can be obtained <u>from IRIS</u> by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

D) For Equation S13, a numerical value for PEF can be calculated using Equation S15. The remaining parameters in Equation S13 have either default values listed in Appendix C, Table B or toxicological-specific information (i.e., URF), which can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

E) For Equation S14, a numerical value for PEF' can be calculated using Equation S16. The remaining parameters in Equation S14 have either default values listed in Appendix C, Table B or toxicological-specific information (i.e., URF), which can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

d) Soil Component of the Groundwater Ingestion Exposure Route

The Tier 2 remediation objective for the soil component of the groundwater ingestion exposure route can be calculated using one of the following equations based on the information known about the contaminant source and receptor population:

1) Equation S17 is used to calculate the remediation objective assuming an infinite source of contamination.

A) The numerical quantities for four parameters in Equation S17, the Target Soil Leachate Concentration (Cw), Soil-Water Partition Coefficient (Kd) for non-ionizing organics, Water-Filled Soil Porosity  $\frac{1}{1}$   $\frac{$ 

Filled Soil Porosity Theta aThetaa (qaTa), are calculated using Equations S18, S19, S20 and S21, respectively. Equations S22, S23, S24 and S25 are also needed to calculate numerical values for Equations S18 and S21. The pH-dependent Kd values for ionizing organics can be calculated using Equation S19 and the pH-dependent Koc values in Appendix C, Table I.

B) The remaining parameters in Equation S17 are Henry's Law Constant (H'), a chemical specific value listed in Appendix C, Table E and Dry Soil Bulk Density  $(\underline{rb}2b)$ , a site-specific based value listed in Appendix C, Table B.

C) The default value for GWobj is the Tier 1 groundwater objective. For chemicals for which there is no Tier 1 groundwater remediation objective, the value for GWobj shall be the concentration determined according to the procedures specified in 35 Ill. Adm. Code 620, Subpart F. As an alternative to using Tier 1 groundwater remediation objectives or concentrations determined according to the procedures specified in 35 Ill. Adm. Code 620, Subpart F. As an alternative to using Tier 1 groundwater remediation objectives or concentrations determined according to the procedures specified in 35 Ill. Adm. Code 620, Subpart F., GWobj may be developed using Equations R25 and R26, if approved institutional controls are in place as required in Subpart J.

2) If the area and depth of the contaminant source are known or can be estimated reliably, mass limit considerations may be used to calculate the remediation objective for this exposure route using Equation S28. The parameters in Equation S28 have default values listed in Appendix C, Table B.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.712 SSL Soil Gas Equation for the Outdoor Inhalation Exposure Route

a) This <u>sectionSection</u> sets forth the equation and parameters used to develop Tier 2 soil gas remediation objectives for the outdoor inhalation exposure route using the SSL approach.

b) Equation S30 is used to calculate Tier 2 soil gas remediation objectives for the outdoor inhalation exposure route for residential, industrial/commercial, and construction worker populations.

c) Equations S4 through S16, S26 and S27, which calculate Tier 2 soil remediation objectives as described in Section 742.710(c), form the basis for developing the Tier 2 soil gas remediation objectives for the outdoor inhalation exposure route using the SSL model.

d) The remaining parameters used to calculate Equation S30 are listed in Appendix C, Table B, except for Dimensionless Henry's Law Constant (25? C), a chemical specific value listed in Appendix C, Table E.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.715 RBCA Soil Equations

a) This Section presents the RBCA model and describes the equations and parameters used to develop Tier 2 soil remediation objectives.

b) Ingestion, Outdoor Inhalation, and Dermal Contact

1) The two sets of equations in subsections (b)(2) and (b)(3) of this Section shall be used to generate Tier 2 soil remediation objectives for the combined ingestion, outdoor inhalation, and dermal contact with soil exposure routes.

2) Combined Exposure Routes of Soil Ingestion, Outdoor Inhalation of Vapors and Particulates, and Dermal Contact with Soil

A) Equations R1 and R2 form the basis for deriving Tier 2 remediation objectives for the set of equations that evaluates the combined exposure routes of soil ingestion, outdoor inhalation of vapors and particulates, and dermal contact with soil using the RBCA approach. Equation R1 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R2 is used to calculate soil remediation objectives for noncarcinogenic contaminants. Soil remediation objectives for the <u>ambient vapor inhalation (outdoor)</u> outdoor inhalation exposure route from subsurface soils must also be calculated in accordance with the procedures outlined in subsection (b) (3) of this Section and compared to the values generated from Equations R1 or R2. The smaller value (i.e., R1 and R2 compared to R7 and R8, respectively) from these calculations is the Tier 2 soil remediation objective for the combined exposure routes of soil ingestion, outdoor inhalation, and dermal contact with soil.

B) In Equation R1, numerical values are calculated for two parameters:

i) The volatilization factor for surficial soils (VFss) using Equations R3 and R4; and

ii) The volatilization factor for subsurface surficial soils regarding particulates (VFp) using Equation  $R_{5.5.5}$ 

C) VFss uses Equations R3 and R4 to derive a numerical value. Equation R3 requires the use of Equation R6. Both equations must be used to calculate the VFss. The lowest calculated value from these equations must be substituted into Equation R1.

D) The remaining parameters in Equation R1 have either default values listed in Appendix C, Table D or toxicological-specific information (i.e., SFo, SFi), which can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

E) For Equation R2, the parameters VFss and VFp are calculated. The remaining parameters in Equation R2 have either default values listed in Appendix C, Table D or toxicological-specific information (i.e., RfDo, RfDi+, which can be obtained from IRIS by following the guidelines in OSWER Directive 9285.7-53, as incorporated by reference in Section 742.210 or requested from the program under which the remediation is being performed.

F) For chemicals other than inorganics which do not have default values for the dermal absorption factor (RAFd) in Appendix C, Table  $D_{\tau}$  a dermal absorption factor of 0.5 shall be used for Equations R1 and R2. For inorganics, dermal absorption may be disregarded (i.e., RAFd = 0).

3) Ambient Vapor Inhalation (outdoor) Outdoor Inhalation Exposure Route route from Subsurface Soils (soil below one meter)

A) Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the ambient vapor inhalation (outdoor) outdoor inhalation

exposure <u>route</u> from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.

B) For Equation R7, the carcinogenic risk-based screening level for air (RBSLair) and the volatilization factor for soils below one meter to ambient air (VFsamb) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on input parameters from a variety of sources.

C) The noncarcinogenic risk-based screening level for air (RBSLair) and the volatilization factor for soils below one meter to ambient air (VFsamb) in Equation R8 have numerical values that can be calculated using Equations R10 and R11, respectively.

c) Soil Component of the Groundwater Ingestion Exposure Route

1) Equation R12 forms the basis for deriving Tier 2 remediation objectives for the soil component of the groundwater ingestion exposure route using the RBCA approach. The parameters, groundwater at the source (GWsource) and Leaching Factor (LFsw), have numerical values that are calculated using Equations R13 and R14, respectively.

2) Equation R13 requires numerical values that are calculated using Equation R15.

3) Equation R14 requires numerical values that are calculated using Equations R21, R22, and R24. For non-ionizing organics, the Soil Water Sorption Coefficient (ks) shall be calculated using Equation R20. For ionizing organics and inorganics, the values for (ks) are listed in Appendix C, Tables I and J, respectively. The pH-dependent ks values for ionizing organics can be calculated using Equation R20 and the pH- dependent Koc values in Appendix C, Table I. The remaining parameters in Equation R14 are field measurements or default values listed in Appendix C, Table D.

d) The default value for GW comp is the Tier 1 groundwater remediation objective. For chemicals for which there is no Tier 1 groundwater remediation objective, the value for GW comp shall be the concentration determined according to the procedures specified in 35 Ill. Adm. Code 620, Subpart F. As an alternative to using the above concentrations, GW comp may be developed using Equations R25 and R26, if approved institutional controls are in place as may be required in Subpart J.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.717 J&E Soil Gas Equations for the Indoor Inhalation Exposure Route

a) This Section sets forth the equations and parameters to be used to develop Tier 2 soil gas remediation objectives for the indoor inhalation exposure route using the modified J&E model.

b) Equations J&E1 and J&E2 calculate, for carcinogens and noncarcinogens, respectively, an acceptable concentration of the contaminant of concern in indoor air that adequately protects humans who inhale this air. Equation J&E3 converts indoor air concentrations from parts per million volume to milligrams per cubic meter. c) Equation J&E4 calculates an acceptable concentration of the contaminant of concern in the soil gas at the source of contamination. This calculation is made using: -+

1) an attenuation factor developed in accordance with Equations J&E7 through 18; and +

2) the acceptable concentration of the contaminant of concern in indoor air calculated in accordance with Equation J&E1 (for carcinogens) or J&E2 (for noncarcinogens).

d) The attenuation factor (Equation J&E7 or J&E8) accounts for the following processes:

1) Migration of contaminants from the source upwards through the vadose zone;

2) Migration of contaminants through the earthen filled cracks in the slabon-grade or basement floor and walls; and

3) Mixing of the contaminants with air inside the building.

e) Equation J&E7 is used <u>wherewhen</u> the mode of contaminant transport is both diffusion and advection. In this scenario, the Qsoil value equals 83.33 cm3/sec as described in Section 742.505.

f) Equation J&E8 is used wherewhen the mode of contaminant transport is diffusion only. In this scenario, the Qsoil value equals 0.0 cm3/sec as described in Section 742.505.

g) Equations J&E9a through J&E18 calculate input parameters for either Equation J&E7 or J&E8 (the equations used to calculate an attenuation factor). These equations assume there are "n" different soil layers between the source of the contamination and the floor of the building. Equations J&E11, 16, 17 and 18 shall be used to calculate the needed parameters for each of the n layers (the general soil layer is referred to as soil layer "i" and  $i = \frac{1,2, \ldots, 1,2,\ldots, n}{2,\ldots, n}$ . Equations J&E16, 17, and 18 shall also be used to calculate needed parameters for the soil in the cracks of the floor of the building (it is through these cracks that contaminants flow from the subsurface and into the building).

h) The default representative subsurface temperature for Henry's Law Constant is 13?C. This value shall be used, as appropriate, in all calculations needed to represent the system by which contaminants migrate through the subsurface.

i) The calculated soil gas remediation objective shall be compared with the saturated vapor concentration (Cvsat, Equation J&E6b) for each volatile chemical. The calculated Cvsat shall use the default representative subsurface temperature specified in 742.717 subsection (g). If the calculated soil gas remediation objective is greater than Cvsat, then Cvsat is used as the soil gas remediation objective.

j) The calculated soil gas remediation objective shall be compared to concentrations of soil gas collected at a depth at least 3 feet below ground surface and above the saturated zone. If a valid sample cannot be collected, a soil gas sampling plan shall be approved by the Agency under Tier 3.

(Source: Added at 36 Ill. Reg. \_, effective \_\_\_\_\_)

SUBPART H: TIER 2 GROUNDWATER EVALUATION

Section 742.805 Tier 2 Groundwater Remediation Objectives

a) To develop a groundwater remediation objective under this Section that exceeds the applicable Tier 1 groundwater remediation objective, or for which there is no Tier I groundwater remediation objective, a person may request approval from the Agency if the person has performed the following:

1) Identified the horizontal and vertical extent of groundwater for which the Tier 2 groundwater remediation objective is sought;

2) Taken corrective action, to the maximum extent practicable to remove any free product;

3) Using Equation R26 in accordance with Section 742.810, demonstrated that the concentration of any contaminant of concern in groundwater will meet:

A) The applicable Tier 1 groundwater remediation objective at the point of human exposure; or

B) For any contaminant of concern for which there is no Tier 1 groundwater remediation objective, the concentration determined according to the procedures specified in 35 Ill. Adm. Code 620 at the point of human exposure. A person may request the Agency to provide these concentrations or may propose these concentrations under Subpart I;

4) Using Equation R26 in accordance with Section 742.810, demonstrated that the concentration of any contaminant of concern in groundwater within the minimum or designated maximum setback zone of an existing potable water supply well will meet the applicable Tier 1 groundwater remediation objective or, if there is no Tier 1 groundwater remediation objective, the concentration determined according to the procedures specified in 35 Ill. Adm. Code 620. A person may request the Agency to provide these concentrations or may propose these concentrations under Subpart I;

5) Using Equation R26 in accordance with Section 742.810, demonstrated that the concentration of any contaminant of concern in groundwater discharging into a surface water will meet the applicable water quality standard under 35 Ill. Adm. Code 302;

6) Demonstrated that the source of the release is not located within the minimum or designated maximum setback zone or within a regulated recharge area of an existing potable water supply well; and

7) If the selected corrective action includes an engineered barrier as set forth in Subpart K to minimize migration of contaminants of concern from the soil to the groundwater, demonstrated that the engineered barrier will remain in place for post-remediation land use through an institutional control as set forth in Subpart J.

b) A groundwater remediation objective that exceeds the water solubility of that chemical (refer to Appendix C, Table E for solubility values) is not allowed. c) The contaminants of concern for which a Tier 1 remediation objective has been developed shall be included in any mixture of similar-acting chemicals under consideration in Tier 2. The evaluation of 35 Ill. Adm. Code 620.615 regarding mixtures of similar-acting chemicals shall be considered satisfied for Class I groundwater at the point of human exposure if either of the following requirements are achieved:

1) Calculate the weighted average using the following equations:

Wave=x1+x2+x3+...+xaCUOxCUOxCUOxCUOx123a
where:

Wave = Weighted AveragexAveragex1 through xa = Concentration of each individual contaminant at the location of concern. Note that, depending on the target organ, the actual number of contaminants will range from 2 to 33. CUOxa CUOx = A Tier 1 or Tier 2 remediation objective must be developed for each xa. A If the value of the weighted average calculated in accordance with the equations above is less than or equal to 1.0, then the remediation objectives are met for those chemicals.

B) If the value of the weighted average calculated in accordance with the equations above is greater than 1.0, then additional remediation must be carried out until the level of contaminants remaining in the remediated area has a weighted average calculated in accordance with the equation above less than or equal to one; or

2) Divide each individual chemical's remediation objective by the number of chemicals in that specific target organ group that were detected at the site. Each of the contaminant concentrations at the site is then compared to the remediation objectives that have been adjusted to account for this potential additivity.

d) The evaluation of 35 Ill. Adm. Code 620.615 regarding mixtures of similaracting chemicals are considered satisfied if the cumulative risk from any contaminant(s)contaminants of concern listed in Appendix A, Table I, plus any other contaminant(s)contaminants of concern detected in groundwater and listed in Appendix A, Table F as affecting the same target organ/organ system as the contaminant(s)contaminants of concern detected from Appendix A, Table I, does not exceed 1 in 10,000.

e) Groundwater remediation objectives for the indoor inhalation exposure route shall be developed in accordance with Section 742.812.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.810 RBCA Calculations to Predict Impacts from Remaining Groundwater Contamination

a) Equation R26 predicts the contaminant concentration along the centerline of a groundwater plume emanating from a vertical planar source in the aquifer (dimensions Sw wide and Sd deep). This model accounts for both threedimensional dispersion (x is the direction of groundwater flow, y is the other horizontal direction, and z is the vertical direction) and biodegradation.

1) The parameters in this equation are: X

distance from the planar source to the location of concern, along the X= centerline of the groundwater plume (i.e., y = 0, z = 0)Cx = the concentration of the contaminant at a distance X from the source, along the centerline of the plumeCsource = the greatest potential concentration of the contaminant of concern in the groundwater at the source of the contamination, based on the concentrations of contaminants in groundwater due to the release and the projected concentration of the contaminant migrating from the soil to the groundwater. As indicated above, the model assumes a planar source discharging groundwater at a concentration equal to Csource.ax dispersivity in the x direction (i.e., Equation R16)ay = dispersivity in the y direction (i.e., Equation R17)az = dispersivity in the z direction (i.e., Equation R18)U = specific discharge (i.e., actual groundwater flow velocity through a porous medium; takes into account the fact that the groundwater actually flows only through the pores of the subsurface materials) where the aquifer hydraulic conductivity (K), the hydraulic gradient (I) and the total soil porosity qTTT must be known (i.e., Equation R19) 12= first order degradation constant obtained from Appendix C, Table E or from measured groundwater dataSw dataSw= width of planar groundwater source in the y directionSd directionSd= depth of planar groundwater source in the z direction

2) The following parameters are determined through field measurements: U, K, I, qTTT, Sw, Sd.

A) The determination of values for U, K, I and qTTT can be obtained through the appropriate laboratory and field techniques;

B) From the immediate down-gradient edge of the source of the groundwater contamination values for Sw and Sd shall be determined. Sw is defined as the width of groundwater at the source which exceeds the Tier 1 groundwater remediation objective. Sd is defined as the depth of groundwater at the source which exceeds the Tier 1 groundwater remediation objective; and

C) Total soil porosity can also be calculated using Equation R23.

b) Once values are obtained for all the input parameters identified in subsection (a) of this Section, the contaminant concentration Cx along the centerline of the plume at a distance X from the source shall be calculated so that X is the distance from the down-gradient edge of the source of the contamination at the site to the point where the contaminant concentration is equal to the Tier 1 groundwater remediation objective or concentration determined according to the procedures specified in 35 Ill. Adm. Code 620, Subpart F.

1) If there are any potable water supply wells located within the calculated distance X, then the Tier 1 groundwater remediation objective or concentration shall be met at the edge of the minimum or designated maximum setback zone of the nearest potable water supply down-gradient of the source. To demonstrate that a minimum or maximum setback zone of a potable water supply well will not be impacted above the applicable Tier 1 groundwater remediation objective or concentration determined according to the procedures specified in 35 Ill. Adm. Code 620, Subpart F, X shall be the distance from the Csource location to the edge of the setback zone.

2) To demonstrate that no surface water is adversely impacted, X shall be the distance from the down-gradient edge of the source of the contamination site to the nearest surface water body. This calculation must show that the contaminant

in the groundwater at this location (Cx) does not exceed the applicable water quality standard.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.812 J&E Groundwater Equations for the Indoor Inhalation Exposure Route

Groundwater remediation objectives for the indoor inhalation exposure route are calculated using the modified J&E model as described in Section 742.717, except as follows:

a) In Equation J&E9a, the total number of layers of soil that contaminants migrate through from the source to the building shall include a capillary fringe layer.

b) The thickness of the capillary fringe layer is 37.5 cm.

c) The volumetric water content of the capillary fringe shall be 90 % of the total porosity of the soil that comprises the capillary fringe.

d) Equations J&E7 and J&E8 calculate an acceptable groundwater remediation objective.

1) This calculation is made using: (1

 $\underline{A}$ ) the soil gas remediation objective calculated in accordance with Equation  $J\&E_{4,4}^{4}$  and  $\frac{42}{2}$ 

 $\underline{B}$ ) the assumption that this gas is in equilibrium with any contamination in the groundwater.

 $\pm 2$ ) Equation J&E7 is used wherewhen the mode of contaminant transport is both diffusion and advection. In this scenario, the Qsoil value equals 83.33 cm3/sec as described in Section 742.505.

23) Equation J&E8 is used wherewhen the mode of contaminant transport is diffusion only. In this scenario, the Qsoil value equals 0.0 cm3/sec as described in Section 742.505.

e) A groundwater remediation objective that exceeds the water solubility of that chemical (refer to Appendix C, Table E for solubility values) is not allowed.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART I: TIER 3 EVALUATION

Section 742.900 Tier 3 Evaluation Overview

a) Tier 3 sets forth a flexible framework to develop remediation objectives outside of the requirements of Tiers 1 and 2. Although Tier 1 and Tier 2 evaluations are not prerequisites to conduct Tier 3 evaluations, data from Tier 1 and Tier 2 can assist in developing remediation objectives under a Tier 3 evaluation. b) The level of detail required to adequately characterize a site depends on the particular use of Tier 3. Tier 3 can require additional investigative efforts beyond those described in Tier 2 to characterize the physical setting of the site. However, in situations where remedial efforts have simply reached a physical obstruction additional investigation may not be necessary for a Tier 3 submittal.

c) Situations that can be considered for a Tier 3 evaluation include, but are not limited to:

1) Modification of parameters not allowed under Tier 2;

2) Use of models different from those used in Tier 2;

3) Use of additional site data, such as results of indoor air sampling, to improve or confirm predictions of exposed receptors to contaminants of concern;

4) Analysis of site-specific risks using formal risk assessment, probabilistic data analysis, and sophisticated fate and transport models (e.g., requesting a target hazard quotient greater than 1 or a target cancer risk greater than 1 in 1,000,000);

5) Requests for site-specific remediation objectives because an assessment indicates further remediation is not practical;

6) Incomplete human exposure pathway(s)parkways not excluded under Subpart C;

7) Use of toxicological-specific information not available from the sources listed in Tier 2;

8) Land uses which are substantially different from the assumed residential or industrial/commercial property uses of a site (e.g., a site will be used for recreation in the future and cannot be evaluated in Tier 1 or 2); and

9) Requests for site-specific remediation objectives that exceed Tier 1 groundwater remediation objectives so long as the following is demonstrated:

A) To the extent practical, the exceedance of the groundwater quality standard has been minimized and beneficial use appropriate to the groundwater that was impacted has been returned; and

B) Any threat to human health or the environment has been minimized. [415 ILCS 5/58.5(d)(4)(A)]; and

10) Use of building control technologies, other than those described in Subpart L, to prevent completion of the indoor inhalation exposure route.

d) For requests of a target cancer risk ranging between 1 in 1,000,000 and 1 in 10,000 at the point of human exposure or a target hazard quotient greater than 1 at the point of human exposure, the requirements of Section 742.915 shall be followed. Requests for a target cancer risk exceeding 1 in 10,000 at the point of human exposure are not allowed.

e) Requests for approval of a Tier 3 evaluation must be submitted to the Agency for review under the specific program under which remediation is performed. When reviewing a submittal under Tier 3, the Agency shall consider whether the interpretations and conclusions reached are supported by the information gathered. [415 ILCS 58.7(e)(1)]. The Agency shall approve a Tier 3 evaluation if the person submits the information required under this Part and establishes through such information that public health is protected and that specified risks to human health and the environment have been minimized.

f) If contaminants of concern include polychlorinated biphenyls (PCBs), requests for approval of a Tier 3 evaluation must additionally address the applicability of 40 CFR 761.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.920 Impractical Remediation

Any request for site-specific remediation objectives due to impracticality of remediation shall be submitted to the Agency for review and approval. Any request for site-specific remediation objectives due to impracticality of remediation that involves the indoor inhalation exposure route shall follow Section 742.935 in lieu of this Section. A submittal under this Section shall include the following information:

a) The reason(s)reasons why the remediation is impractical;

- b) The extent of contamination;
- c) Geology, including soil types;
- d) The potential impact to groundwater;
- e) Results and locations of sampling events;
- f) Map of the area, including all utilities and structures; and

g) Present and post-remediation uses of the area of contamination, including human receptors at risk.

(Source: Amended at 36 Ill. Reg. \_\_, effective \_\_\_\_\_)

Section 742.925 Exposure Routes

Technical information may demonstrate that there is no actual or potential impact of contaminants of concern to receptors from a particular exposure route. In these instances, a demonstration excluding an exposure route shall be submitted to the Agency for review and approval. A demonstration that involves the indoor inhalation exposure route shall follow Section 742.935 in lieu of this Section. A submittal under this Section shall include the following information:

a) A description of the route evaluated;

b) A description of the site and physical site characteristics;

c) A discussion of the result and possibility of the route becoming active in the future; and

d) Technical support that may include, but is not limited to, the following:

1) a discussion of the natural or man-made barriers to that exposure route;

- calculations and modeling;
- 3) physical and chemical properties of contaminants of concern; and
- 4) contaminant migration properties.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.935 Indoor Inhalation Exposure Route

a) Exclusion of Exposure Route Site information may demonstrate that there is no actual or potential impact of contaminants of concern to receptors from the indoor inhalation exposure route. In suchthe instances, a demonstration excluding the exposure route shall be submitted to the Agency for review and approval. A submittal under this Section shall include the following information:

1) A description of the site, physical site characteristics, existing and planned buildings, and existing and planned manmade pathways; and

2) A discussion of the possibility of the route becoming active in the future.

b) Exclusion of Exposure Route Using Building Control Technologies Any proposals to use building control technologies as a means to prevent or mitigate human exposures under the indoor inhalation exposure route that differ from the requirements of Subpart L shall be submitted to the Agency for review and approval. A submittal under this Section shall include the following information:

1) A description of the site and physical site characteristics;

2) The current extent of contamination;

3) Geology, including soil parameters;

4) Results and locations of sampling events;

5) Scaled map of the area, including all buildings and man-made pathways;

6) A description of building characteristics and methods of construction, including a description of man-made pathways;

7) Present and post-remediation uses of the land above the area of contamination, including human receptors at risk;

8) A description of any building control technologies currently in place or proposed for installation that can reduce or eliminate the potential for completion of the exposure route, including design and construction specifications;

9) Information regarding the effectiveness of any building control technologies currently in place or proposed for installation and a schedule for performance testing to show the effectiveness of the control technology. For buildings not yet constructed, an approved building control technology shall be in place and operational prior to human occupancy;

10) Identification of documents reviewed and the criteria used in the documents for determining whether building control technologies are effective and how those criteria compare to existing or potential buildings or man-made pathways at the site; and

11) A description as to how the effectiveness of the building control technologies will be operated and maintained for the life of the buildings and man-made pathways, or until soil gas and groundwater contaminant concentrations have reached remediation objectives that are approved by the Agency. This includes provisions for potential extended system inoperability due to power failure or other disruption.

c) Calculations and Modeling Used to Establish Soil Gas Remediation Objectives

The calculations and modeling shall account for contaminant transport through the mechanisms of diffusion and advection. Proposals to use soil gas data, including <u>subslabsub-slab</u> samples, to establish remediation objectives for the indoor inhalation exposure route that differ from the requirements of Section 742.227 shall be submitted to the Agency for review and approval. A submittal under this Section shall include the following information:

 Scaled map of the area, showing all buildings and man-made pathways (current and planned);

2) The current extent of contamination;

3) Geology, including soil parameters;

4) Depth to groundwater (including seasonal variation) and flow direction;

5) Location of soil gas sampling points; and

6) A discussion of soil gas sampling procedures that, at a minimum, addresses the following:

A) sampling equipment;

B) soil gas collection protocol, including field tests and weather conditions; and

C) laboratory analytical methods.

d) Calculations and Modeling Used to Establish Soil Remediation Objectives The calculations and modeling shall account for contaminant transport through the mechanisms of diffusion and advection. Any proposals to use soil data in lieu of soil gas data to establish remediation objectives for the indoor inhalation exposure route shall be submitted to the Agency for review and approval. A submittal under this Section shall include the following information:

1) Scaled map of the area, showing all buildings and man-made pathways (current and planned);

2) The current extent of contamination;

3) Geology, including soil parameters;

4) Location of soil sampling points; and

5) A discussion of soil sampling procedures that, at a minimum, addresses the following:

A) sampling equipment;

B) soil collection protocol, including field tests and weather conditions; and

C) laboratory analytical methods-1

6) Mathematical and technical justification for the model proposed; and

7) Demonstration that the model was correctly applied.

e) Calculations and Modeling Used to Establish Groundwater Remediation Objectives

The calculations and modeling shall account for contaminant transport through the mechanisms of diffusion and advection. Proposals to use groundwater data to establish remediation objectives for the indoor inhalation exposure route that differ from the requirements of <u>SectionSections</u> 742.805 and <u>Section</u> 742.812 shall be submitted to the Agency for review and approval. A submittal under this Section shall include the following information...

 Scaled map of the area, showing all buildings and man-made pathways (current and planned);

2) The current extent of contamination;

3) Geology, including soil parameters and the thickness of the capillary fringe;

4) Depth to groundwater (including seasonal variation) and flow direction;

5) Results and locations of groundwater sampling events;

6) Mathematical and technical justification for the model proposed; and

7) Demonstration that the model was correctly applied.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART J: INSTITUTIONAL CONTROLS

Section 742.1000 Institutional Controls

a) Institutional controls in accordance with this Subpart must be placed on the property when remediation objectives are based on any of the following assumptions:

1) Industrial/Commercial property use;

Target cancer risk greater than 1 in 1,000,000;

3) Target hazard quotient greater than 1;

4) Engineered barriers;

5) The point of human exposure is located at a place other than at the source;

6) Exclusion of exposure routes; or

7) Use of remediation objectives based on a diffusion only mode of contaminant transport for the indoor inhalation exposure route;

8) Use of an indoor inhalation building control technology; or

b) The Agency shall not approve any remediation objective under this Part that is based on the use of institutional controls unless the person has proposed institutional controls meeting the requirements of this Subpart and the requirements of the specific program under which the institutional control is proposed. A proposal for approval of institutional controls shall provide identification of the selected institutional controls from among the types recognized in this Subpart.

c) The following instruments may be institutional controls subject to the requirements of this Subpart J and the requirements of the specific program under which the institutional control is proposed:

1) No Further Remediation Letters;

2) Environmental Land Use Controls;

3) Land Use Control Memoranda of Agreement;

4) Ordinances adopted and administered by a unit of local government;

5) Agreements between a property owner (or, in the case of a petroleum leaking underground storage tank, the owner or operator of the tank) and a highway authority with respect to any contamination remaining under highways; and

6) Agreements between a highway authority, which that is also the property owner (or, in the case of a petroleum leaking underground storage tank, the owner or operator of the tank) and the Agency with respect to any contamination remaining under the highways.

d) No Further Remediation Letters and Environmental Land Use Controls that meet the requirements of this Subpart and the recording requirements of the program under which remediation is being performed are transferred with the property.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.1010 Environmental Land Use Controls

a) An Environmental Land Use Control (ELUC) is an institutional control that may be used under this Part to impose land use limitations or requirements

related to environmental contamination. ELUCs are only effective when approved by the Agency in accordance with this Part. Activities or uses that may be limited or required include, but are not limited to, prohibition of use of groundwater for potable purposes, restriction to industrial/commercial uses, operation or maintenance of engineered barriers, indoor inhalation building control technologies, or worker safety plans. ELUCs may be used in the following circumstances:

1) When No Further Remediation Letters are not available, including but not limited to when contamination has migrated off-site or outside the remediation site; or

2) When No Further Remediation Letters are not issued under the program for which a person is undergoing remediation.

b) Recording requirements:

, \* ,

> 1) An ELUC approved by the Agency pursuant to this Section must be recorded in the Office of the Recorder or Registrar of Titles for the county in which the property that is the subject of the ELUC is located. A copy of the ELUC demonstrating that it has been recorded must be submitted to the Agency before the Agency will issue a no further remediation determination.

2) An ELUC approved under this Section will not become effective until officially recorded in the chain of title for the property that is the subject of the ELUC in accordance with subsection (b)(1) of this Section.

3) Reference to the recorded ELUC must be made in the instrument memorializing the Agency's no further remediation determination. Recording of the no further remediation determination and confirmation of recording must be in accordance with the requirements of the program under which the determination was issued.

4) The requirements of this Section do not apply to Federally Owned Property for which the Federal Landholding Entity does not have the authority under federal law to record land use limitations on the chain of title.

5) The requirements of this Section apply only to those sites for which a request for a no further remediation determination has not yet been made to the Agency by January 6, 2001.

c) Duration:

1) Except as provided in this subsection (c), an ELUC shall remain in effect in perpetuity.

2) At no time shall any site for which an ELUC has been imposed as a result of remediation activities under this Part be used in a manner inconsistent with the land use limitation unless attainment of objectives appropriate for the new land use is achieved and a new no further remediation determination has been obtained and recorded in accordance with the program under which the ELUC was first imposed or the Site Remediation Program (35 Ill. Adm. Code 740).--- [415 ILCS 58.8(c)]. In addition, the appropriate release or modification of the ELUC must be prepared by the Agency and filed on the chain of title for the property that is the subject of the ELUC. A) For a Leaking Underground Storage Tank (LUST) site under 35 Ill. Adm. Code 731, or 732, or 734 or a Site Remediation Program site under 35 Ill. Adm. Code 740, an ELUC may be released or modified only if the NFR Letter is also modified under the Site Remediation Program to reflect the change;

B) For a RCRA site under 35 Ill. Adm. Code 721-730, an ELUC may be released or modified only if there is also an amended certification of closure or a permit modification.

3) In addition to any other remedies that may be available, a failure to comply with the limitations or requirements of an ELUC may result in voidance of an Agency no further remediation determination in accordance with the program under which the determination was made. The failure to comply with the limitations or requirements of an ELUC may also be grounds for an enforcement action pursuant to Title VIII of the Act.

d) An ELUC submitted to the Agency must match the form and contain the same substance, except for variable elements (e.g., name of property owner), as the model in Appendix F and must contain the following elements:

1) Name of property owners and declaration of property ownership;

2) Identification of the property to which the ELUC applies by common address, legal description, and Real Estate Tax Index/Parcel Index Number;

3) A reference to the Bureau of Land LPC numbers or 10-digit identification numbers under which the remediation was conducted;

4) A statement of the reason for the land use limitation or requirement relative to protecting human health and the surrounding environment from soil, groundwater, and/or other environmental contamination;

5) The language instituting such land use limitations or requirements;

6) A statement that the limitations or requirements apply to the current owners, occupants, and all heirs, successors, assigns, and lessees;

7) A statement that the limitations or requirements apply in perpetuity or until:

A) The Agency determines that there is no longer a need for the ELUC;

B) The Agency, upon written request, issues to the site that received the no further remediation determination that relies on the ELUC a new no further remediation determination approving modification or removal of the limitations or requirements;

C) The new no further remediation determination is filed on the chain of title of the site subject to the no further remediation determination; and

D) A release or modification of the land use limitation is filed on the chain of title for the property that is the subject of the ELUC;

8) Scaled site maps showing:

.

A) The legal boundary of the property to which the ELUC applies;

B) The horizontal and vertical extent of contaminants of concern above applicable remediation objectives for soil, and groundwater, and soil gas to which the ELUC applies;

C) Any physical features to which an ELUC applies (e.g., engineered barriers, monitoring wells, caps, indoor inhalation building control technologies); and

D) The nature, location of the source, and direction of movement of the contaminants of concern;

9) A statement that any information regarding the remediation performed on the property for which the ELUC is necessary may be obtained from the Agency through a request under the Freedom of Information Act [5 ILCS 140] and rules promulgated thereunder; and

10) The dated, notarized signatures of the property owners or authorized agent.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.1015 Ordinances

An ordinance adopted by a unit of local government that effectively a) prohibits the installation of potable water supply wells (and the use of such wells) may be used as an institutional control to meet the requirements of Section 742.320(d) or 742.805(a)(3) if the requirements of this Section are met. A model ordinance is found in Appendix G. Ordinances prohibiting the installation of potable water supply wells (and the use of such wells) that do not expressly prohibit the installation of potable water supply wells (and the use of such wells) by units of local government may be acceptable as institutional controls if the requirements of this Section are met and a Memorandum of Understanding (MOU) is entered into under subsection (i) of this Section. For purposes of this Section, a unit of local government is considered to be expressly prohibited from installing and using potable water supply wells only if the unit of local government is included in the prohibition provision by name. The prohibition required by this Section shall satisfy the following requirements at a minimum:

1) The prohibition shall not allow exceptions for potable water well installation and use other than for the adopting unit of local government;

2) The prohibition shall apply at all depths and shall not be limited to particular aquifers or other geologic formations;

3) If the prohibition does not apply everywhere within the boundaries of the unit of local government, the limited area to which the prohibition applies shall be easily identifiable and clearly defined by the ordinance (e.g., narrative descriptions accompanied by maps with legends or labels showing prohibition boundaries, or narrative descriptions using fixed, common reference points such as street names). Boundaries of prohibitions limited by area shall be fixed by the terms of the ordinance and shall not be subject to change without amending the ordinance in which the prohibition has been adopted (e.g., no boundaries defined with reference to zoning districts or the availability of the public water supply); and

4) The prohibition shall not in any way restrict or limit the Agency's approval of the use of the ordinance as an institutional control pursuant to

this Part (e.g., no restrictions based on remediation program participation  $\tau$  or no restrictions on persons performing remediation within the prohibition area who may use the ordinance).

b) A request for approval of a local ordinance as an institutional control shall provide the following:

1) A copy of the ordinance restricting groundwater use certified by an official of the unit of local government in which the site is located that it is a true and accurate copy of the ordinance, unless the Agency and the unit of local government have entered an agreement under subsection (i) of this Section, in which case the request may alternatively reference the MOU. The ordinance must demonstrate that potable use of groundwater from potable water supply wells is prohibited;

2) A scaled map(s) or maps delineating the area and extent of groundwater contamination modeled above the applicable remediation objectives including any measured data showing concentrations of contaminants of concern in which the applicable remediation objectives are exceeded;

3) A scaled map delineating the boundaries of all properties under which groundwater is located which<u>that</u> exceeds the applicable groundwater remediation objectives;

4) Information identifying the current owner(s)owners of each property identified in subsection (b)(3) of this Section; and

5) A copy of the proposed written notification to the unit of local government that adopted the ordinance and to the current owners identified in subsection (b)(4) of this Section that includes the following information:

A) The name and address of the unit of local government that adopted the ordinance;

B) The ordinance's citation;

C) A description of the property being sent notice by adequate legal description, reference to a plat showing the boundaries of the property, or by accurate street address;

D) Identification of the party requesting to use the groundwater ordinance as an institutional control, and a statement that the party has requested approval from the Agency to use the ordinance as an institutional control;

E) A statement that use of the ordinance as an institutional control allows contamination above groundwater ingestion remediation objectives to remain in groundwater beneath the affected properties, and that the ordinance strictly prohibits human and domestic consumption of the groundwater;

F) A statement as to the nature of the release and response action with the site name, site address, and Agency site number or Illinois inventory identification number; and

G) A statement that more information about the remediation site may be obtained by contacting the party requesting the use of the groundwater ordinance as an institutional control or by submitting a FOIA request to the Agency. c) Written notification proposed pursuant to subsection (b)(5) of this Section must be sent to the unit of local government that adopted the ordinance. as well as <u>to</u> all current property owners identified in subsection (b)(4). Written proof that the notification was sent to the unit of local government and the property owners shall be submitted to the Agency within 45 days from the date the Agency's no further remediation determination is recorded. Such proof may consist of the return card from certified mail, return receipt requested, a notarized certificate of service, or a notarized affidavit.

d) Unless the Agency and the unit of local government have entered into a MOU under subsection (i) of this Section, the current owner or successors in interest of a site who have received approval of use of an ordinance as an institutional control under this Section shall:

1) Monitor activities of the unit of local government relative to variance requests or changes in the ordinance relative to the use of potable groundwater at properties identified in subsection (b)(3) of this Section; and

2) Notify the Agency of any approved variance requests or ordinance changes within 30 days after the date such action has been approved.

e) The information required in subsections (b)(1) through (b)(5) of this Section and the Agency letter approving the groundwater remediation objective shall be submitted to the unit of local government. Proof that the information has been filed with the unit of local government shall be provided to the Agency.

f) Any ordinance or MOU used as an institutional control pursuant to this Section shall be recorded in the Office of the Recorder or Registrar of Titles of the county in which the site is located together with the instrument memorializing the Agency's no further remediation determination pursuant to the specific program within 45 days after receipt of the Agency's no further remediation determination.

g) An institutional control approved under this Section shall not become effective until officially recorded in accordance with subsection (f) of this Section. The person receiving the approval shall obtain and submit to the Agency within 30 days after recording a copy of the institutional control demonstrating that it has been recorded.

h) The following shall be grounds for voidance of the ordinance as an institutional control and the instrument memorializing the Agency's no further remediation determination:

1) Modification of the ordinance by the unit of local government to allow potable use of groundwater;

2) Approval of a site-specific request, such as a variance, to allow potable use of groundwater at a site identified in subsection (b)(3) of this Section;

3) Violation of the terms of an institutional control recorded under Section 742.1005 or Section 742.1010; or

4) Failure to provide notification and proof of such notification pursuant to subsection (c) of this Section.

i) The Agency and a unit of local government may enter into a MOU under this Section if the unit of local government has adopted an ordinance satisfying subsection (a) of this Section and if the requirements of this subsection are met. The MOU submitted to the Agency must match the form and contain the same substance as the model in Appendix H and shall include the following:

1) Identification of the authority of the unit of local government to enter the MOU;

2) Identification of the legal boundaries, or equivalent, under which the ordinance is applicable;

3) A certified copy of the ordinance;

- 1

4) A commitment by the unit of local government to notify the Agency of any variance requests or proposed ordinance changes at least 30 days prior to the date the local government is scheduled to take action on the request or proposed change;

5) A commitment by the unit of local government to maintain a registry of all sites within the unit of local government that have received no further remediation determinations pursuant to specific programs; and

6) If the ordinance does not expressly prohibit the installation of potable water supply wells (and the use of such wells) by units of local government, a commitment by the unit of local government:

A) To review the registry of sites established under subsection (i)(5) of this Section prior to siting potable water supply wells within the area covered by the ordinance;

B) To determine whether the potential source of potable water may be or has been affected by contamination left in place at those sites; and

C) To take whatever steps are necessary to ensure that the potential source of potable water is protected from the contamination or treated before it is used as a potable water supply.

j) A groundwater ordinance may not be used to exclude the indoor inhalation exposure route.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART K: ENGINEERED BARRIERS

Section 742.1105 Engineered Barrier Requirements

a) Natural attenuation, access controls, and point of use treatment shall not be considered engineered barriers. Engineered barriers may not be used to prevent direct human exposure to groundwater without the use of institutional controls.

b) For purposes of determining remediation objectives under Tier 1, engineered barriers are not recognized.

c) The following engineered barriers are recognized for purposes of calculating remediation objectives that exceed residential remediation objectives:

1) For the soil component of the groundwater ingestion exposure route, the following engineered barriers are recognized if they prevent completion of the exposure pathway:

A) Caps or walls constructed of compacted clay, asphalt, concrete or other material approved by the Agency; and

B) Permanent structures such as buildings and highways.

2) For the soil ingestion exposure route, the following engineered barriers are recognized if they prevent completion of the exposure pathway:

A) Caps or walls constructed of compacted clay, asphalt, concrete, or other material approved by the Agency;

B) Permanent structures such as buildings and highways; and

C) Soil, sand, gravel, or other geologic materials that:

i) Cover the contaminated media;

2.8

ii) Meet the soil remediation objectives under Subpart E for residential property for contaminants of concern; and

iii) Are a minimum of three feet in depth.

3) For the outdoor inhalation exposure route, the following engineered barriers are recognized if they prevent completion of the exposure pathway:

A) Caps or walls constructed of compacted clay, asphalt, concrete, or other material approved by the Agency;

B) Permanent structures such as buildings and highways; and

C) Soil, sand, gravel, or other geologic materials that:

i) Cover the contaminated media;

ii) Meet the soil remediation objectives under Subpart E for residential property for contaminants of concern; and

iii) Are a minimum of ten feet in depth and not within ten feet of any manmade pathway.

4) For the ingestion of groundwater exposure route, the following engineered barriers are recognized if they prevent completion of the exposure pathway:

A) Slurry walls; and

B) Hydraulic control of groundwater.
d) Unless otherwise prohibited under Section 742.1100, any other type of engineered barrier may be proposed if it will be as effective as the options listed in subsection (c) of this Section.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

SUBPART L: BUILDING CONTROL TECHNOLOGIES

Section 742.1200 Building Control Technologies

a) Any person who develops remediation objectives under this Part based on building control technologies shall meet the requirements of this Subpart and the requirements of Subpart J relative to institutional controls.

b) The Agency shall not approve any remediation objective under this Part that is based on the use of building control technologies unless the person has proposed building control technologies meeting the requirements of this Subpart or Subpart I and Subpart J relative to institutional controls.

c) The use of building control technologies can be recognized in determining remediation objectives only if the building control technologies are intended for use as part of the final corrective action.

d) An approved building control technology shall be in place and operational prior to human occupancy.

e) Any no further remediation determination based upon the use of building control technologies shall require effective maintenance of the building control technology. The maintenance requirements shall be included in an institutional control under Subpart J. This institutional control shall address provisions for inoperability by requiring the following if the building control technology is rendered inoperable:

1) The site owner/operator shall notify building occupants and workers in advance of intrusive activities. Such The notification shall enumerate the contaminant of concern known to be present;

2) The site owner/operator shall require building occupants and workers to implement protective measures consistent with good industrial hygiene practice; and

3) For a school, the site owner/operator shall notify the Agency upon any building control technology being rendered inoperable. For the purposes of this subsection (e)(3), the term "school" means any public educational facility in Illinois, including grounds and/or campus, consisting of students, comprising one or more grade groups or other identifiable groups, organized as one unit with one or more teachers to give instruction of a defined type. Public educational facility includes, but is not limited to, primary and secondary (kindergarten <u>-</u>12th grade), charter, vocational, alternative, and special education schools. Public educational facility does not include junior colleges, colleges, or universities.

f) Failure to install or maintain a building control technology in accordance with a no further remediation determination shall be grounds for voidance of the determination and the instrument memorializing the Agency's no further remediation determination.

(Source: Added at 36 Ill. Reg. \_, effective \_\_\_\_\_)

Section 742.1205 Building Control Technology Proposals

A proposal to use a building control technology under this Subpart shall include the following information:

a) A description of the site and physical site characteristics;

b) The current extent and modeled migration of contamination;

c) Geology, including soil types;

d) Results and locations of sampling events;

e) Scaled map of the area, including all buildings and man-made pathways;

f) A description of building characteristics and methods of construction, including a description of man-made pathways; and

g) Present and post-remediation uses of the land above the area of contamination, including human receptors at risk.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.1210 Building Control Technology Requirements

a) Natural attenuation, access controls, and point of use treatment shall not be considered building control technologies.

b) For purposes of determining compliance with remediation objectives under Tier 1, building control technologies are not recognized.

c) The following building control technologies are recognized for purposes of pathway exclusion under Section 742.312.

1) Sub-slab depressurization (SSD) systems meeting the following requirements:

A) A suction pit is installed that is at least two cubic feet and extends at least 6 inches below the slab (larger suction pits may be excavated as needed to achieve the performance criteria in <u>Section 742.1210subsection</u>(c)(1)(B));

B) A PVC pipe of at least 3 inches in diameter extends from the suction pit to the intake side of an in-line fan capable of achieving a static vacuum of at least 0.25 inches water column (wc) at the suction point and measureable vacuum at the <u>furthestfarthest</u> edges of the area served by the suction pit under worst case conditions (all exhaust fans and heating systems running, during cold weather) as determined by a differential pressure reading of at least -0.003 inches we below the slab or visible downward flow of air at test holes using chemical or smoke sticks;

C) All visible cracks and joints in the slab (including the place where the pipe exits the slab) and foundation walls are sealed;

D) The pipe exhausts outside the building at least 10 feet above ground and at least 10 feet from any door or window; and

E) Additional suction pits meeting the requirements of <u>Section</u> 742.1210<u>subsection</u>(c)(1)(A) shall be installed as necessary to achieve measureable vacuum below the slab in all areas, including in any area where subsurface or foundation conditions (e.g., a sub-slab grade beam) prevent adequate suction field extension.

2) Sub-membrane depressurization (SMD) systems meeting the following requirements:

A) A non-woven geotextile is installed on the exposed earthen material;

B) A cross-laminated polyethylene membrane liner at least 0.10 mm (or 4 mil) thick is placed over the geotextile and sealed to foundation walls using a low volatile adhesive that is recommended by the liner manufacturer (e.g., acrylic latex adhesive);

C) A 3 inch diameter PVC pipe extends from a hole cut in the liner to the intake side of an in-line fan capable of achieving a static vacuum of at least 0.25 inches water column (wc) at the riser pipe and measureable vacuum at the furthestfarthest edges of the liner under worst case conditions (all exhaust fans running during cold weather) as determined by a differential pressure reading of at least -0.003 inches wc below the liner or visible downward flow of air in test holes using chemical or smoke sticks;

D) The pipe is sealed to the liner;

E) The pipe exhausts outside the building at least 10 feet above ground and at least 10 feet from any door or window; and

F) No leaks based on smoke stick tests along the entire perimeter of the liner (i.e., at all sealed edges) with the fan running. Where leaks are identified, appropriate repairs are undertaken and smoke stick testing repeated until no leaks are detected.

3) Membrane barrier systems when placed below concrete slabs meeting the following requirements:

A) The membrane is impermeable to volatile chemicals and is not less than 1.5 mm (or 60 mil) thick;

B) The membrane is sealed to foundation walls and any penetrating pipes according to membrane manufacturer/installer recommendations;

C) The membrane is installed in accordance with the manufacturer's requirements and by an applicator trained and approved by the manufacturer;

D) A smoke test of the membrane system (where smoke is injected below the installed liner prior to slab installation), in accordance with the manufacturer's requirements, is performed to ensure no leaks exist. Where leaks are identified, appropriate repairs are undertaken and smoke testing repeated until no leaks are detected; E) The membrane is puncture resistant to slab installation construction activities and protected by sand layers or geotextiles as recommended by the manufacturer; and

F) Construction activities following membrane installation do not damage, puncture or tear the membrane or otherwise compromise its ability to prevent the migration of volatile chemicals.

4) Vented raised floors meeting the following requirements:

A) An interconnected void system below the slab sufficient to allow free movement of air and communication of negative pressures to all points below the slab;

B) Sealing of all construction joints, open cracks, and penetrations through the slab (e.g., for utilities and riser pipes) with a low volatile caulk; and

C) At least one 3 inch diameter riser pipe venting to the atmosphere above the roof line (at least 10 feet from any doors or windows) for each 5000 square feet of membrane area, with the capability of converting passively vented floor systems to actively vented or SSD systems meeting the performance requirements of Section 742.1210(c)(1). subsection (c)(1).

(Source: Added at 36 Ill. Reg. \_\_, effective \_\_\_\_)

Section 742.APPENDIX A+--- General

Section 742.TABLE A: Soil Saturation Limits (Csat) for Chemicals Whose Melting Point is Less than 30° C

CAS No.Chemical NameCsat (mg/kg)67 64 1Acetone100,00071 43 2Benzene870111 44 4Bis(2-chloroethyl)ether3,300117 81 7Bis(2-ethylhexyl)phthalate31,00075 27 4Bromodichloromethane (Dichlorobromomethane)3,00075 25 2Bromoform1,90071 36 3Butanol10,00085 68 7Butyl benzyl phthalate93075 15 0Carbon disulfide72056 23 5Carbon tetrachloride1,100108 90 7Chlorobenzene (Monochlorobenzene)680124 48 1Chlorodibromomethane (Dibromochloromethane)1,30067 66 3Chloroform2,90096 12 81,2 Dibromo 3 chloropropane1,400106 93 41,2 Dibromoethane (Ethylene dibromide)2,80084 74 2Di n-butyl phthalate2,30095 50 11,2 Dichlorobenzene (o Dichlorobenzene)56075 34 31,1 Dichloroethane1,700107 06 21,2 Dichloroethane (Ethylene dichloride)1,80075 35 41,1 Dichloroethylene1,500156 59 2cis 1,2 Dichloroethylene1,200156 60 5trans 1,2 Dichloroethylene3,10078 87 51,2 Dichloropropane1,100542 75 61,3 Dichloropropene (1,3 Dichloropropylene, cis + trans)1,40084 66 2 Diethyl phthalate2,000117 84 0Di n-octyl phthalate10,000100 41-

4Ethylbenzene40077-47-4Hexachlorocyclopentadiene2,20078-59-1Isophorone4,60074-83-9Methyl bromide (Bromomethane)3,2001634-04-4Methyl tertiary butyl

ether8,80075-09-2Methylene-chloride (Dichloromethane)2,40098-95-

3Nitrobenzene1,000100-42-5Styrene1,500127-18-4Tetrachloroethylene

(Perchloroethylene)240108-88-3Toluene650120-82-11,2,4-Trichlorobenzene3,20071-55-61,1,1-Trichloroethane1,20079-00-51,1,2-Trichloroethane1,80079-01-

55 61, 1, 1 Hickney 20075 00 51, 1, 2 Hickney Container, 00075 01

6Trichloroethylene1,300108-05-4Vinyl acetate2,70075-01-4Vinyl chloride1,200108-38-3m-Xylene42095-47-60-Xylene410106-42-3p-Xylene4601330-20-7Xylenes-

(total)320Ionizable Organics95-57-82-Chlorophenol53,000ForNameFor the Outdoor Inhalation Exposure Routea Csat (mg/kg)For the Soil Component of the Groundwater Ingestion Exposure Routeb Csat (mg/kg)CAS No.Chemical Name67-64-1Acetone1.00E+052.00E+0571-43-2Benzene8.00E+025.80E+02111-44-4Bis(2-

chloroethyl)ether3.00E+033.90E+03117-81-7Bis(2-

ethylhexyl)phthalate2.00E+026.80E+0175-27-4Bromodichloromethane (Dichlorobromomethane) 2.80E+032.00E+0375-25-2Bromoform2.00E+031.20E+0371-36-3Butanol1.00E+041.60E+0478-93-32-Butanone (MEK)2.50E+044.50E+0485-68-7Butyl benzyl phthalate1.00E+033.40E+0275-15-0Carbon disulfide8.50E+025.20E+0256-23-5Carbon tetrachloride1.20E+035.60E+02108-90-7Chlorobenzene (Monochlorobenzene) 6.20E+022.90E+02124-48-1Chlorodibromomethane (Dibromochloromethane)1.40E+038.90E+0267-66-3Chloroform3.40E+032.50E+0395-57-82-Chlorophenol cChlorophenolc (ionizable organic) 1.00E+047.10E+0375-99-0Dalapon1.20E+051.90E+0596-12-81,2-Dibromo-3-chloropropane6.90E+024.30E+02106-93-41,2-Dibromoethane (Ethylene dibromide)1.60E+031.20E+0384-74-2Di-n-butyl phthalate2.60E+038.80E+0295-50-11,2-Dichlorobenzene (o-Dichlorobenzene) 5.60E+022.10E+0275-71-8Dichlorodifluoromethane 8.70E+024.30E+0275-34-31,1-Dichloroethane1.70E+031.40E+03107-06-21,2-Dichloroethane (Ethylene dichloride)1.90E+032.10E+0375-35-41,1-Dichloroethylene1.40E+039.10E+02156-59-2cis-1,2-Dichloroethylene1.30E+031.00E+03156-60-5trans-1,2-Dichloroethylene3.00E+032.10E+0378-87-51,2-Dichloropropane1.20E+038.70E+02542-75-61,3-Dichloropropene (1,3-Dichloropropylene, cis + trans)1.00E+038.50E+0284-66-2 Diethyl phthalate2.20E+039.20E+02105-67-92,4-Dimethylphenol1.00E+044.70E+03117-84-0Di-n-octyl phthalate1.60E+015.20E+00123-91-1p-Dioxane1.00E+052.00E+05100-41-4Ethylbenzene3.50E+021.50E+0277-47-4Hexachlorocyclopentadiene1.30E+024.40E+0178-59-1Isophorone3.00E+033.00E+0398-82-8Isopropylbenzene (Cumene) 9.40E+024.00E+027439-97-6Mercury (elemental) 3.10E+00N/A74-83-9Methyl bromide (Bromomethane)3.10E+033.60E+031634-04-4Methyl tertiary-butyl ether8.40E+031.10E+0475-09-2Methylene chloride (Dichloromethane)2.50E+033.00E+0398-95-3Nitrobenzene7.10E+025.90E+02621-64-7n-Nitrosodi-n-propylamine1.90E+032.30E+03100-42-5Styrene6.30E+022.60E+02127-18-4Tetrachloroethylene (Perchloroethylene)8.00E+023.10E+02108-88-3Toluene5.80E+022.90E+02120-82-11,2,4-Trichlorobenzene3.40E+021.20E+0271-55-61,1,1-Trichloroethane1.30E+036.70E+0279-00-51,1,2-Trichloroethane1.80E+031.30E+0379-01-6Trichloroethylene1.20E+036.50E+0275-69-4Trichlorofluoromethane1.80E+038.90E+02108-05-4Vinyl acetate2.60E+034.20E+0375-01-4Vinyl chloride2.60E+032.90E+03108-38-3m-Xylene4.10E+021.60E+0295-47-60-Xylene3.70E+021.50E+02106-42-3p-Xylene3.30E+021.40E+021330-20-7Xylenes (total)2.80E+021.10E+02 Soil Saturation Limits calculated using an foc of 0.006 g/g and a system а temperature of 25°C.

b Soil Saturation Limits calculated using an foc of 0.002 g/g and a system temperature of 25 °C.

c Csat for pH of 6.8. If soil pH is other than 6.8, a site-specific Csat should be calculated using equations S19 and S29 and the pH-specific Koc values in Appendix C. Table I.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742.APPENDIX A General

Section 742.TABLE E Similar-Acting Noncarcinogenic Chemicals Adrenal GlandCentral Nervous SystemNitrobenzeneButanol (Ingestion only)1,2,4-Trichlorobenzene (Ingestion only)Cyanide (amenable)2,4-DimethylphenolKidneyEndrinAcetone (Ingestion only)ManganeseCadmium (Ingestiononly)2 MethylphenolChlorobenzeneMercury (Inhalation only)DalaponStyrene-(Inhalation only)1,1-DichloroethaneToluene (Inhalation only)Di-n-octyl phthalate-

```
(Ingestion only)Xylenes (Ingestion only)EndosulfanEthylbenzeneCirculatory-
SystemFluorantheneAntimonyMethyl tertiary butyl ether (Inhalation only)Barium-
(Ingestion only)Nitrobenzene2,4-DPyrenecis-1,2-Dichloroethylene (Ingestion-
only)Toluene (Ingestion only)Nitrobenzene2,4,5-Trichlorophenoltrans-1,2-
Dichloroethylene (Ingestion only) Vinyl acetate (Ingestion only) 2,4-
DimethylphenolFluorantheneLiverFluoreneAcenaphtheneStyrene (Ingestion-
only)Acetone (Ingestion only)ZincButylbenzyl phthalate (Ingestion-
only)Chlorobenzene (Ingestion only)Gastrointestinal System1,1-Dichloroethylene-
(Ingestion only)Beryllium (Ingestion only)Di-n-octyl phthalate (Ingestion-
only)EndothallEndrinHexachlorocyclopentadiene (Ingestion only)EthylbenzeneMethyl-
bromide (Ingestion only)FluorantheneMethyl tertiary butyl ether (Ingestion-
only)Methyl tertiary butyl ether (Inhalation only)NitrobenzenePicloramStyrene-
(Ingestion only)2,4,5-TP (Silvex)Toluene (Ingestion only)1,2,4-Trichlorobenzene-
(Inhalation only) 2, 4, 5-TrichlorophenolImmune System
2,4-Dichlorophenol
p-Chloroaniline
Mercury (Ingestion only) Reproductive System
Barium (Inhalation only)
Boron (Ingestion only)
Carbon disulfide
2-Chlorophenol (Ingestion only)
1,2 Dibromo-3-Chloropropane (Inhalation only)
Dinoseb
Ethylbenzene (Inhalation only)
Methoxychlor
PhenolRespiratory System
1,2-Dichloropropane (Inhalation only)
1,3-Dichloropropylene (Inhalation only)
Hexachlorocyclopentadiene (Inhalation only)
Methyl bromide (Inhalation only)
Naphthalene (Inhalation only)
Toluene (Inhalation only)
Vinyl acetate (Inhalation only)
```

## <u>Adrenal Gland</u> Isopropylbenzene

```
Cholinesterase Inhibition
Aldicarb
CarbofuranDecreased Body Weight Gains
and Circulatory System Effects
Carbofuran
```

```
<u>Circulatory System</u>
<u>Alachlor</u>
<u>Antimony (ingestion only)</u>
<u>Benzene</u>
<u>Cobalt (ingestion only)</u>
<u>2.4-D</u>
<u>cis-1.2-Dichloroethylene (ingestion only)</u>
<u>2.4-Dimethylphenol</u>
<u>2.4-Dimitrotoluene</u>
<u>2.6-Dinitrotoluene</u>
<u>Ensosulfan</u>
<u>Fluoranthene</u>
<u>Fluorene</u>
<u>Methylene Chloride (inhalation only)</u>
```

Nickel (Res. & I/C only) (inhalation only) <u>Nitrate as N</u> Nitrobenzene (ingestion only) Selenium Simazine Styrene (ingestion only) 1,3,5-Trinitrobenzene <u>Zinc</u> Decreased Body Weight Gain Atrazine Bis(2-chloroethvl)ether <u>Cvanide</u> 1,2-Dichlorobenzene (inhalation only) Diethyl phthalate (ingestion only) Ensosulfan 2-Methylphenol (o-cresol) Naphthalene (ingestion only) Nickel (ingestion only) <u>n-Nitrosodiphenylamine</u> Phenol (ingestion only) Simazine Tetrachloroethylene (ingestion only) Adrenal GlandDecreased Body Weight Gain (continued) IsopropylbenzeneEnsosulfan2-Methylphenol (o-cresol)Cholinesterase InhibitionNaphthalene (ingestiononly)AldicarbNickel (ingestion only)Carbofurann-NitrosodiphenylaminePhenol (ingestion only) Circulatory SystemSimazineAlachlorTetrachloroethylene (ingestiononly)Antimony (ingestion only) 1,1,1-Trichloroethane (ingestion only) BenzeneVinyl <u>Vinyl</u> acetate (ingestion only) Cobalt (ingestion only) Xylenes (Res. & I/C only) (ingestion only) 2,4-Deis-1,2-Dichloroethylene-(ingestion only) Endocrine System<sup>2,4</sup> - DimethylphenolCyanide<sup>2,4</sup> - Dinitrotoluene <u>Cvanide</u> 1,2-Dibromoethane (ingestion only)2,6-DinitrotolueneDi <u>Di</u>-n-octyl phthalate (ingestion only) EnsosulfanNitrobenzeneFluoranthene <u>Nitrobenzene</u> 1,2,4-Trichlorobenzene (ingestion only) FluoreneMethylene Chloride (inhalationonly)EyeNickel (Res. & I/C only) (inhalation only)2,4 DinitrophenolNitrate as Nn-NitrosodiphenylamineNitrobenzene (ingestion only)-<u>Eve</u> 2,4-Dinitrophenol n-Nitrosodiphenylamine Polychlorinated biphenyls (PCBs) SeleniumTrichloroethyleneSimazineStyrene (ingestion only) Trichloroethylene Gastrointestinal System1,3,5 Trinitrobenzene Beryllium (ingestion only) ZincCopper Copper 1,3-Dichloropropene (cis + trans) Endothall Fluoride

```
<u>Hexachlorocyclopentadiene</u> (ingestion only) Decreased Body Weight
GainEndothallAtrazine FluorideBis(2-chloroethyl)etherHexachlorocyclopentadiene-
(ingestion only) CyanideIron1, 2 Dichlorobenzene (inhalation only)
Iron
 Methyl bromide (ingestion only) Diethyl phthalate (ingestion only)
 Methyl tertiary-butyl ether (ingestion only) Immune SystemLiver (continued) 4-
ChloroanilineChlorobenzene (ingestion only)2,4-
DichlorophenolChlorodibromomethane (ingestion only)
Immune System
4-Chloroaniline
2,4-Dichlorophenol
Mercury (ingestion only) ChloroformPolychlorinated
<u>Polychlorinated</u> biphenyls (PCBs)2,4-DDDTKidney1,2-Dibromoethane (ingestion-
only)
Kidnev
 Acetone (ingestion only)
<u>Aldrin (CW only)</u>
<u>Barium</u>
Bromodichloromethane (ingestion only)
<u>Cadmium</u>
2,4-D
Dalapon
1,1-Dichloroethane
1,2-Dichloroethane (CW only) (ingestion only)
<u>Ensosulfan</u>
Ethylbenzene (ingestion only)
Fluoranthene
gamma-HCH (gamma-BHC)
Hexachloroethane (ingestion only)
Isopropylbenzene
Mecoprop (MCPP)
Methyl tertiary-butyl ether (inhalation only)
Pentachlorophenol
<u>Pvrene</u>
Toluene (ingestion only)
 2.4.5-Trichlorophenol
Vinvl acetate (ingestion only)
<u>Liver</u>
Acenaphthene
Aldrin (Res. & I/C only)
Bis(2-ethylhexyl)phthalate (Res. & I/C only) (ingestion only)
Bromoform
 Butyl Benzyl Phthalate (ingestion only)
Carbon Tetrachloride
Chlordane
Chlorobenzene (ingestion only)
Chlorodibromomethane (ingestion only)
Chloroform
2,4-D
DDT
 1,2-Dibromoethane (ingestion only)
1,2-Dichlorobenzene (CW only) (ingestion only)Aldrin (CW only)1,4-
DichlorobenzeneBariumDichlorodifluoromethaneBromodichloromethane (ingestion-
only)
```

```
1,4-Dichlorobenzene
Dichlorodifluoromethane
1,2-Dichloroethane (inhalation only) Cadmium
 1,1-Dichloroethylene2,4 Dtrans-1,2 DichloroethyleneDalapon
trans-1,2-Dichloroethylene
 1,2-Dichloropropane (ingestion only)1,1-DichloroethaneDieldrin (Res. & I/C-
only)1,2 Dichloroethane (CW only) (ingestion only)2,4-
DinitrotolueneEnsosulfan2, 6 - DinitrotolueneEthylbenzene (ingestion only)
<u>Dieldrin (Res. & I/C onlv)</u>
 2.4-Dinitrotoluene
2,6-Dinitrotoluene
 Di-n-octyl phthalate (ingestion only) Fluoranthenep
_p-Dioxane gamma HCH (gamma BHC) EndrinHexachloroethane (ingestion only)
<u>Endrin</u>
 Ethylbenzene (ingestion only) IsopropylbenzeneFluorantheneMecoprop-
(MCPP)HeptachlorMethyl tertiary-butyl ether (inhalation only)Heptachlor
epoxidePentachlorophenolHexachlorobenzenePyrenealpha-HCH (alpha-BHC)Toluene-
(ingestion only)gamma-HCH (gamma-BHC)2,4,5 TrichlorophenolHigh Melting Exlosive
Fluoranthene
Heptachlor
Heptachlor epoxide
<u>Hexachlorobenzene</u>
alpha-HCH (alpha-BHC)
gamma-HCH (gamma-BHC)
 <u>High Melting Explosive</u>, Octogen (HMX) Vinyl acetate (ingestion only)
 Isophorone (inhalation only)
 Methyl tertiary-butyl etherLiverMethyleneether
<u>Methylene</u> Chloride (ingestion only)AcenaphthenePentachlorophenolAldrin (Res. &
I/C only) Phenol (inhalation only) Bis (2 ethylhexyl) phthalate (Res. & I/C only)
(ingestion only) PicloramBromoformStyrene (ingestion only) Butyl Benzyl Phthalate
(ingestion only)
Pentachlorophenol
Phenol (inhalation only)
<u>Picloram</u>
Styrene (ingestion only)
 Tetrachloroethylene (ingestion only) Carbon TetrachlorideToxaphene
Toxaphene (CW only) Chlordane
 2,4,5-TP (Silvex) Liver (continued) Reproductive System (continued)
 1,2,4-Trichlorobenzene (inhalation only)Carbofuran
 1,1,1-Trichloroethane (inhalation only) Carbon disulfide (ingestion only)
 1,1,2-Trichloroethane (ingestion only)2-Chlorophenol
 2,4,5-Trichlorophenol1,2-Dibromo-3-chloropropane
 2,4,6-Trinitrotoluene (TNT) 1,2-Dibromoethane (ingestion only)
 Vinyl Chloride DicambaDinosebMortalityEthylbenzene (inhalation only)
Mortality
 Di-n-butyl phthalate (ingestion only) Isophorone (inhalation only)
 Xylenes (Res. & I/C only) (ingestion only) Reproductive System (continued)
 Nervous SystemMethoxychlorButanolSystem
<u>Butanol</u> (ingestion only)
Carbon disulfide (inhalation only)
Cvanide
Dieldrin
 2,4-Dimethylphenol
2,4-Dinitrotoluene
```

2,6-Dinitrotoluene

Endrin Hexachloroethane (inhalation only) (CW only) Manganese Mercury (inhalation only) 2-Methylphenol (o-cresol) Phenol (inhalation only) <u>Selenium</u> Styrene (inhalation only) Tetrachloroethylene (inhalation only) Toluene (inhalation only) Trichloroethylene Xylenes (CW only) (ingestion only) Xylenes (inhalation only) Reproductive System Arsenic (inhalation only) Bis(2-ethylhexyl)phthalate (CW only) (ingestion only) Boron <u>2-Butanone</u> Carbofuran Carbon disulfide (ingestion only) 2-Chlorophenol 1.2-Dibromo-3-chloropropane 1,2-Dibromoethane (ingestion only) Dicamba Dinoseb Ethylbenzene (inhalation only) Isophorone (inhalation only) <u>Methoxychlor</u> Royal Demolition Explosive, Cyclonite (RDX) Carbon disulfide (inhalation only)2,4,6 TrichlorophenolCyanideDieldrin (CW only) 2.4.6-Trichlorophenol Respiratory System2, 4 - DimethylphenolAntimony <u>Antimony</u> (inhalation only)2,4-DinitrotolueneBenzoie Benzoic Acid (inhalation only)2,6-DinitrotolueneBeryllium Beryllium (inhalation only) EndrinCadmium Cadmium (inhalation only) Hexachloroethane (inhalation only) (CW only) Chromium (hex) (inhalation only) ManganeseCobalt <u>Cobalt</u> (inhalation only) Mercury (inhalation only) 1,2-Dibromoethane (inhalation only)2-Methylphenol (o-cresol) trans-1,2-Dichloroethylene (inhalation only) Phenol (inhalation only) 1,2-Dichloropropane (inhalation only) Selenium 1,3-Dichloropropene (cis + trans) (inhalation only) Styrene (inhalation only) Hexachlorocyclopentadiene (inhalation only) Tetrachloroethylene (inhalationonly) Methyl bromide (inhalation only) Toluene (inhalation only) Naphthalene (inhalation only) TrichloroethyleneNickel Nickel (inhalation only) Xylenes (CW only) (ingestion only) Nitrobenezene (inhalation only)Xylenes (inhalation only) Nitrobenzene (inhalation only) Vinyl acetate (inhalation only) Reproductive SystemSkinArsenic (inhalation only) Skin Arsenic (ingestion only) Bis(2 ethylhexyl)phthalate (CW only) (ingestion only) Polychlorinated biphenyls (PCBs) BoronSelenium2 ButanoneSilverSpleen

Selenium

<u>Silver</u>

<u>Spleen</u> 1,3-Dinotrobenzene 1,3,5-TrinitrobenzeneNotesTrinitrobenzene Notes: Res. = Residential receptorIreceptor <u>I/C = Industrial Commercial receptorCWreceptor</u> <u>CW</u> = Construction Worker receptor (Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_ Section 742.APPENDIX A+--- General Section 742.TABLE F: Similar-Acting Carcinogenic Chemicals Bladder 1,3-Dichloropropene (cis + trans) (ingestion only) n-Nitrosodiphenylamine Circulatory System Benzene 1,2-Dibromoethane 1,2-Dichloroethane Pentachlorophenol 2,4,6-Trichlorophenol Gall Bladder p-Dioxane (inhalation only) Gastrointestinal System Benzo(a) anthracene (ingestion only) Benzo(b)fluoranthene (ingestion only) Benzo(k)fluoranthene (ingestion only) Benzo(a)pyrene (ingestion only) Bromoform Chrysene (ingestion only) Dibenzo(a,h)anthracene (ingestion only) 1,2-Dibromoethane (ingestion only) Indeno(1,2,3-cd)pyrene (ingestion only) Kidney Bromodichloromethane (Ingestioningestion only) Chloroform (Ingestioningestion only) 1,2-Dibromo-3-chloropropane (Ingestioningestion only) 2,4-Dinitrotoluene 2,6-Dinitrotoluene **Hexachlorobenzene** Nitrobenzene Liver Aldrin Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate (Ingestion only) Carbazole Carbon tetrachlorideTetrachloride

```
Chlordane
Chloroform (Inhalation only)
DDD
DDE
DDT
1, 2-Dibromo-3 chloropropane (Ingestion only)
1,2-Dibromoethane(Ingestion only)
3,3'-Dichlorobenzidine
1,2-Dichloroethane1,2-Dichloropropane (Ingestion only)
1,3-Dichloropropylene (Ingestion only)
Dieldrin
2,4-Dinitrotoluene
2,6-Dinitrotoluene
p-Dioxane
Heptachlor
Heptachlor epoxide
Hexachlorobenzene
alpha-HCH<u>(alpha-BHC)</u>
gamma-HCH (Lindane)gamma-BHC)
Methylene chlorideChloride
Nitrobenzene
Nn-Nitrosodiphenylamine (inhalation only)
Nn-Nitrosodi-n-propylamine
Pentachlorophenol
Polychlorinated biphenvls (PCBs)
Tetrachloroethylene
Trichloroethylene
2,4,6-Trichlorophenol
Toxaphene
Trichloroethvlene
Vinyl chloride (I/C & CW)
Circulatory System
Benzene
2,4,6-Trichlorophenol
Castrointestinal System
Benzo (a) anthracene
Benzo(b)fluoranthene
Benzo(k) fluoranthene
Benzo (a) pyrene
Chrysene
Dibenzo(a, h) anthracene
Indeno(1,2,3-c,d)pyrene
Bromodichloromethane (Ingestion only)
Bromoform
1,2-Dibromo 3 chloropropane (Ingestion only)
1,2-Dibromoethane (Ingestion only)
1,3-Dichloropropylene (Ingestion only)
Lung
Arsenic (Inhalation only)
Beryllium (Inhalation only)
```

Cadmium (Inhalation only) Chromium, hexavalent (Inhalation only) 1,3-Dichloropropylene (Inhalation only) Methylene chloride (Inhalation only) N Nitrosodi n propylamine Nickel (Inhalation only) Vinyl chloride

Nasal Cavity 1,2-Dibromo-3 chloropropane (Inhalation only) 1,2-Dibromoethane (Inhalation only) N-Nitrosodi n-propylamine

Bladder 3,3(-Dichlorobenzidine 1,3-Dichloropropylene (Ingestion only) N-Nitrosodiphenylamine Vinyl Chloride (Res.)

<u>Mammary Gland</u> <u>3,3'-Dichlorobenzidine</u> <u>2,4-Dinitrotoluene</u> <u>2,6-Dinitrotoluene</u>

BladderLiver (continued) 1, 3 Dichloropropene (cis + trans) (ingestiononly) Chlordanen-NitrosodiphenylamineChloroformDDDCirculatory-SystemDDEBenzeneDDT1, 2 - Dibromoethane1, 2 - Dichloropropanel, 2-DichloroethaneDieldrinPentachlorophenol2, 4 - Dinitrotoluene2, 4, 6-Trichlorophenol2, 6-Dinitrotoluenep-DioxaneCall BladderHeptachlorp Dioxane-(inhalation only) Heptachlor epoxideHexachlorobenzencGastrointestinal Systemalpha-HCH (alpha-BHC) Benzo(a) anthracene (ingestion only) gamma HCH (gamma-BHC)Benzo(b)fluoranthene (ingestion only)Methylene ChlorideBenzo(k)flouranthene (ingestion only)NitrobenzeneBenzo(a)pyrene (ingestion only)n-Nitrosodiphenylamine (inhalation only)Bromoformn-Nitrosodi n-propylamineChrysene-(ingestion only)PentachlorophenolDibenzo(a,h)anthracene (ingestion only) Polychlorinated biphenyls (PCBs) 1, 2 Dibromoethane (ingestion only) TetrachloroethyleneIndeno(1,2,3-cd)pyrene (ingestion only) ToxapheneTrichloroethyleneKidneyVinyl Chloride (I/C & CW) Bromodichloromethane (ingestion only) Vinyl Chloride (Res.) Chloroform (ingestion only)1,2-Dibromo-3-chloropropane (ingestion only)Mammary-GlandNitrobenzene3,3'-Dichlorobenzidine2,4-DinitrotolueneLiver2,6-DinitrotoluencAldrinBis(2-chloroethyl)etherRespiratory SystemBis(2ethylhexyl)phthalateArsenic (inhalation only)CarbazoleBenzo(a)anthracene-(inhalation only) Carbon TetrachlorideBenzo (b) fluoranthene (inhalation only) Respiratory System (continued Arsenic (inhalation only) Benzo(a) anthracene (inhalation only) Benzo(b)fluoranthene (inhalation only) Benzo(k) flouranthene fluoranthene (inhalation only) Benzo(a)pyrene (inhalation only) BerylliumCadmiumChromium Beryllium Cadmium Chromium (hexavalent ion) Chrysene (inhalation only) Cobalt Dibenzo(a,h)anthracene (inhalation only) 1,2-Dibromo-3-chloropropane (inhalation only) 1,2-Dibromoethane (inhalation only) 1,3-Dichloropropene (cis + trans) (inhalation only) p-Dioxane (inhalation only) TrichloroethyleneNotes **Trichloroethylene** 

Notes: Res. = Residential receptorIreceptor I/C = Industrial Commercial receptorCWreceptor CW = Construction Worker receptor

(Source: Amended at 36 Ill. Reg. \_\_\_, effective \_\_\_\_\_)

Section 742. APPENDIX A+ General

Section 742. Table TABLE J: List of TACO Volatile Chemicals for the Indoor Inhalation Exposure Route

CAS No.Chemical67-64-1Acetone71-43-2Benzene111-44-4Bis(2-chloroethyl)ether75-27-4Bromodichloromethane75-25-2Bromoform71-36-3Butanol78-93-32-Butanone (MEK)75-15-0Carbon disulfide56-23-5Carbon tetrachloride108-90-7Chlorobenzene124-48-1Chlorodibromomethane67-66-3Chloroform95-57-82-Chloropheno175-99-0Dalapon96-12-81, 2-dibromo-3-chloropropane106-93-41, 2-Dibromoethane95-50-11, 2-Dichlorobenzene106-46-71, 4-Dichlorobenzene75-71-8Dichlorodifluoromethane75-34-31, 1-Dichloroethane107-06-21, 2-Dichloroethane75-35-41, 1-Dichloroethylene156-59-2cis-1,2-Dichloroethylene156-60-5Trans-1,2-Dichloroethylene78-87-51,2-Dichloropropane542-75-61,3-Dichloropropylene (cis + trans)123-91-1p-Dioxane100-41-4Ethylbenzene76-44-8Heptachlor118-74-1Hexachlorobenzene77-47-4Hexachlorocyclopentadiene67-72-1Hexachloroethane78-59-1Isophorone 98-82-81sopropylbenzene (Cumene)7439-97-6Mercury74-83-9Methyl bromide1634-04-4Methyl tertiary-butyl ether75-09-2Methylene chloride93-65-22-Methylnaphthalene95-48-72-Methylphenol (o-cresol)91-20-3Naphthalene98-95-3Nitrobenzene621-64-7n-Nitrosodi-n-propylamine108-95-2Phenol1336-36-3Polychlorinated biphenyls (PCBs) 100-42-5Styrene127-18-4Tetrachloroethylene108-88-3Toluene120-82-11,2,4-Trichlorobenzene71-55-61,1,1-Trichloroethane79-00-51,1,2-Trichloroethane79-01-6Trichloroethylene75-69-4Trichlorofluoromethane108-05-4Vinyl acetate75-01-4Vinyl chloride108-38-3m-Xylene95-47-60-Xylene106-42-3p-Xylene1330-20-7Xylenes (total)

(Source: Added at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_\_)

Section 742.APPENDIX A+--- General

Section 742.TABLE K: Soil Vapor Saturation Limits (Cvsat) for Volatile Chemicals

```
CAS No.Chemical NameCvsat (mg/m3)67-64-lAcetone7.50E+0571-43-

2Benzene4.20E+05111-44-4Bis(2-chloroethyl)ether1.20E+0475-27-

4Bromodichloromethane4.50E+0575-25-2Bromoform7.80E+0471-36-3Butanol2.90E+0478-

93-32-Butanone (MEK)3.80E+0575-15-0Carbon disulfide1.50E+0656-23-5Carbon

tetrachloride1.00E+06108-90-7Chlorobenzene7.40E+04124-48-

1Chlorodibromomethane5.70E+0467-66-3Chloroform1.30E+0695-57-82-Chlorophenol

(ionizable organic)1.70E+0475-99-0Dalapon1.50E+0396-12-81,2-Dibromo-3-

chloropropane7.80E+03106-93-41,2-Dibromoethane1.40E+0595-50-11,2-

Dichlorobenzene1.10E+04106-46-71,4-Dichlorobenzene8.40E+0375-71-

8Dichlorodifluoromethane3.30E+0775-34-31,1-Dichloroethane1.30E+06107-06-21,2-

Dichloroethane4.40E+0575-35-41,1-Dichloroethylene3.30E+06156-59-2cis-1,2-

Dichloroethylene1.10E+06156-60-5trans-1,2-Dichloroethylene1.80E+0678-87-51,2-

Dichloropropane3.20E+05542-75-61,3-Dichloropropylene (cis + trans)2.10E+05123-

91-1p-Dioxane1.90E+05100-41-4Ethylbenzene5.90E+0476-44-8Heptachlor8.30E+00118-

74-1Hexachlorobenzene2.80E-0177-47-4Hexachlorocyclopentadiene9.10E+0267-72-
```

1Hexachloroethane2.80E+0378-59-1Isophorone3.40E+0398-82-8Isopropylbenzene (Cumene)3.00E+047439-97-6Mercury (elemental)2.20E+0174-83-9Methyl bromide8.60E+061634-04-4Methyl tertiary-butyl ether1.20E+0675-09-2Methylene chloride2.00E+0693-65-22-Methylnaphthalene5.30E+021634-04-42-Methylphenol (ocresol)1.80E+0391-20-3Naphthalene6.20E+0298-95-3Nitrobenzene1.70E+03621-64-7n-Nitrosodi-n-propylamine9.50E+02108-95-2Phenol1.50E+031336-36-3Polychlorinated biphenyls (PCBs)9.00E+00100-42-5Styrene3.40E+04127-18-4Tetrachloroethylene1.80E+05108-88-3Toluene1.40E+05120-82-11,2,4-Trichlorobenzene4.30E+0371-55-61,1,1-Trichloroethane8.70E+0579-00-51,1,2-Trichloroethane1.70E+0579-01-6Trichloroethylene5.30E+0575-69-4Trichlorofluoromethane6.30E+06108-05-4Vinyl acetate4.30E+0575-01-4Vinyl chloride 1.10E+07108-38-3m-Xylene5.20E+0495-47-60-Xylene4.10E+04106-42-3p-Xylene5.50E+041330-20-7Xylenes (total)4.90E+04 (Source: Added at 36 Ill. Reg. \_, effective Tier 1 Illustrations and Tables Section 742.APPENDIX B+---Section 742. TABLE G. Tier 1 Soil Gas Remediation Objectives for theOutdoor Inhalation Exposure Routea CAS No.Chemical NameResidential (mg/m3)Industrial/Commercial (mg/m3)Construction Worker (mg/m3)67-64-1Acetone750,000e750,000e750,000e71-43-2Benzene420c800c1,100c111-44-4Bis(2-chloroethyl)ether1.3c2.4c3.4c75-27-4Bromodichloromethane450,000e450,000e450,000e75-25-2Bromoform1,800c3,500c4,900c71-36-3Butanol29,000e29,000e29,000e78-93-32-Butanone (MEK)380,000e380,000e15,000b75-15-0Carbon disulfide1,500,000e1,500,000e48,000b56-23-5Carbon tetrachloride290c550c770c108-90-7Chlorobenzene36,000b57,000b3,700b124-48-1Chlorodibromomethane57,000e57,000e150b67-66-3Chloroform110c200c290c95-57-82-Chlorophenol17,000e17,000e17,000e75-99-0Dalapon1,500e1,500e1,500e96-12-81,2-Dibromo-3-chloropropane0.14c0.27c0.38c106-93-41,2-Dibromoethane2.9c5.6c7.9c95-50-11, 2-Dichlorobenzene11, 000e11, 000e6, 700b106-46-71, 4-Dichlorobenzene8,400e8,400e6,400b75-71-8Dichlorodifluoromethane890,000b1,400,000b92,000b75-34-31,1-Dichloroethane870,000b1,300,000e90,000b107-06-21,2-Dichloroethane67c130c180c75-35-41,1-Dichloroethylene520,000b820,000b5,300b156-59-2cis-1,2-Dichloroethylene1,100,000e1,100,000e1,100,000e156-60-5trans-1,2-Dichloroethylene120,000b190,000b12,000b78-87-51,2-Dichloropropane240c470c110c542-75-61,3-Dichloropropylene (cis + trans)1,900c3,700c1,400c123-91-1p-Dioxane16c30c42c100-41-4Ethylbenzene59,000e59,000e8,500b76-44-8Heptachlor0.40c0.76c1.1c118-74-1Hexachlorobenzene0.26c0.28e0.28e77-47-4Hexachlorocyclopentadiene85b140b440b67-72-1Hexachloroethane2,800e2,800e2,800e78-59-1Isophorone3,400e3,400e1,500b98-82-8Isopropylbenzene (Cumene)30,000e30,000e30,000e7439-97-6Mercuryf22e22e0.62b74-83-9Methyl bromide12,000b19,000b2,400b1634-04-4Methyl tertiary-butyl ether1,200,000e1,200,000e23,000b75-09-2Methylene chloride6,100c12,000c5,100b91-57-62-Methylnaphthalene530e530e530e95-48-72-Methylphenol (ocresol)1,800e1,800e410b91-20-3Naphthalene560b620e5.8b98-95-3Nitrobenzene6.5c12c10b621-64-7n-Nitrosodi-n-propylamine0.056c0.11c0.15c108-95-2Phenol1,500e1,500e79b1336-36-3Polychlorinated biphenyls (PCBs)---d---d100-42-5Styrene34,000e34,000e16,000b127-18-4Tetrachloroethylene360c690c970c108-88-3Toluene140,000e140,000e50,000b120-82-11,2,4-Trichlorobenzene1,000b1,600b110b71-55-61,1,1-Trichloroethane870,000e870,000e89,000b79-00-51,1,2-Trichloroethane170,000e170,000e170,000e79-01-6Trichloroethylene1,700c3,300c1,500b75-69-4Trichlorofluoromethane2,100,000b3,400,000b220,000b108-05-4Vinyl

acetate160,000b250,000b1,600b75-01-4Vinyl chloride780c3,000c3,000b108-38-3m-Xylene52,000e52,000e3,100b95-47-60-Xylene41,000e41,000e2,600b106-42-3p-Xylene55,000e55,000e3,300b1330-20-7Xylenes (total)49,000e49,000e2,900b Chemical Name and Remediation Objective Notations

a For the outdoor inhalation exposure route, it is acceptable to determine compliance by meeting either the soil or soil gas remediation objectives. The soil remediation objectives for the outdoor inhalation route are located in Appendix B, Tables A and B.

b Calculated values correspond to a target hazard quotient of 1.

c Calculated values correspond to a cancer risk level of 1 in 1,000,000.

d PCBs are a mixture of different congeners. The appropriate values to use for the physical/chemical and toxicity parameters depend on the congeners present at the site. Persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation objectives is desired.

e The value shown is the Cvsat value of the chemical in soil gas. The Cvsat of the chemical becomes the remediation objective if the calculated value exceeds the Cvsat value or if there are no toxicity criteria available for the inhalation route of exposure.

f Value for the inhalation exposure route is based on Reference Concentration for elemental Mercury (CAS No. 7439-97-6). Inhalation remediation objectives only apply at sites where elemental Mercury is a contaminant of concern.

(Source: Added at 36 Ill. Reg. \_, effective \_\_\_\_)

Section 742.APPENDIX B:--- Tier 1 Illustrations and Tables

Section 742.TABLE H Tier 1 Soil Gas and Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection

Qsoil equals 83.33 cm3/seca Soil GasGroundwaterCAS No.Chemical NameResidential (mg/m3)Industrial/ Commercial (mg/m3)Residential (mg/L) Industrial/ Commercial (mg/L)67-64-1Acetone750,000f750,000f1,000,000g1,000,000g71-43-2Benzene0.37c2.8c0.11c0.41c111-44-4Bis(2chloroethyl)ether0.014c0.087c0.083c0.43c75-27-4Bromodichloromethane450,000f450,000f6,700q6,700q75-25-2Bromoform11c52c3.1c12c71-36-3Butano129,000f29,000f74,000g74,000g78-93-32-Butanone (MEK)6,400b40,000b10,000b48,000b75-15-0Carbon disulfide780b5,300b67b210b56-23-5Carbon tetrachloride0.21c1.5c0.020c0.076c108-90-7Chlorobenzene69b420b26b82b124-48-1Chlorodibromomethane57,000f57,000f2,600g2,600g67-66-3Chloroform0.11c0.92c0.07i0.15c95-57-82-Chlorophenol17,000f17,000f22,000g22,000g75-99-0Dalapone1,500f1,500f900,000q900,000q96-12-81,2-Dibromo-3chloropropanee0.0012c0.0062c0.00065c0.0027c106-93-41,2-Dibromoethane0.0078c0.048c0.0035c0.014c95-50-11,2-Dichlorobenzene290b1,700b140b160g106-46-71,4-

Dichlorobenzene1,200b6,800b79g79g75-71-8Dichlorodifluoromethane270b1,700b3.0b9.2b75-34-31,1-Dichloroethane690b4,200b180b580b107-06-21,2-Dichloroethane0.099c0.81c0.054c0.22c75-35-41,1-Dichloroethylene240b1,600b24b74b156-59-2cis-1,2-Dichloroethylene1,100,000f1,100,000f3,500g3,500g156-60-5trans-1,2-Dichloroethylene85b510b16b51b78-87-51,2-Dichloropropane0.31c2.3c0.12c0.48c542-75-61,3-Dichloropropylene (cis + trans)0.90c6.2c0.14c0.52c123-91-1p-Dioxane0.22c2.3c2.9c25c100-41-4Ethylbenzene1,3c9.3c0.37c1.4c76-44-8Heptachlor0.0063c0.032c0.0025c0.0096c118-74-1Hexachlorobenzene0.0087c0.057c0.0059c0.0062g77-47-4Hexachlorocyclopentadiene0.58b2.6b0.084b0.26b67-72-1Hexachloroethane2,800f2,800f50g50g78-59-1Isophorone2,900b3,400f12,000g12,000g98-82-8Isopropylbenzene (Cumene) 600b3, 500b2.7b8.4b7439-97-6Mercuryh0.42b2.5b0.053b0.060q74-83-9Methyl bromide6.9b42b1.5b4.8b1634-04-4Methyl tertiary-butyl ether3,700b24,000b1,900b6,800b75-09-2Methylene chloride5.6c45c2.1c8.2c91-57-62-Methylnaphthalene530f530f25g25g95-48-72-Methylphenol (ocresol)600b1,800f26,000g26,000g91-20-3Naphthalene0.11c0.75c0.075c0.32c98-95-3Nitrobenzene0.077c0.57c0.34c2.0c621-64-7n-Nitrosodi-npropylamine0.0016c0.012c0.044c0.27c108-95-2Phenol140b1,300b28,000b83,000g1336-36-3Polychlorinated biphenyls (PCBs)---d---d---d100-42-5Styrenel, 400b8, 500b310g310g127-18-4Tetrachloroethylene0.55c4.0c0.091c0.34c108-88-3Toluene6, 200b40, 000b530g530g120-82-11, 2, 4-Trichlorobenzene5.4b25b1.85.9b71-55-61,1,1-Trichloroethane6,600b41,000b1,000b1,300g79-00-51,1,2-Trichloroethane170,000f170,000f4,400g4,400g79-01-6Trichloroethylene1.5c12c0.34c1.3c75-69-4Trichlorofluoromethane860b5,600b26b82b108-05-4Vinyl acetate250b1,600b160b550b75-01-4Vinyl chloride0.29c4.8c0.028c0.21c108-38-3m-Xylene140b850b43b130b95-47-60-Xylene120b790b40b130b106-42-3p-Xylene130b820b38b120b1330-20-7Xylenes (total)e140b840b30b93b Chemical Name and Remediation Objective Notations

a Compliance is determined by meeting either the soil gas remediation objectives or the groundwater remediation objectives. See Sections 742.505 and 742.515.

b Calculated values correspond to a target hazard quotient of 1.

c Calculated values correspond to a cancer risk level of 1 in 1,000,000.

d PCBs are a mixture of different congeners. The appropriate values to use for the physical/chemical and toxicity parameters depend on the congeners present at the site. Persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation objectives is desired.

e Groundwater remediation objective calculated at 25°C. For Dalapon and 1,2-Dibromo-3-chloropropane, the critical temperature (Tc) and enthalpy of vaporization at the normal boiling point (Hv,b) are not available. For Xylenes (total), the enthalpy of vaporization at the normal boiling point (Hv,b) is not available.

f The value shown is the Cvsat value of the chemical in soil gas. The Cvsat of the chemical becomes the remediation objective if the calculated value exceeds the Cvsat value or if there are no toxicity criteria available for the inhalation route of exposure.

The value shown is the solubility of the chemical in water. The solubility of the chemical becomes the remediation objective if the calculated value exceeds the solubility or if there are no toxicity criteria available for the ingestion route of exposure. Value for the inhalation exposure route is based on Reference h Concentration for elemental Mercury (CAS No. 7439-97-6). Inhalation remediation objectives only apply at sites where elemental Mercury is a contaminant of concern. The value shown is the Groundwater Remediation Objective listed in i i Appendix B, Table E. (Source: Added at 36 Ill. Reg. \_, effective \_\_\_\_\_) Section 742.APPENDIX B- Tier 1 Illustrations and Tables Section 742.TABLE I:--- Tier 1 Soil Gas and Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion Only Qsoil equals 0.0 cm3/seca,b Soil GasGroundwaterCAS No.Chemical NameResidential (mg/m3) Industrial/ Commercial (mg/m3)Residential (mg/L) Industrial/ Commercial (mg/L)67-64-1Acetone750,000g750,000g1,000,000h1,000,000h71-43-2Benzene41d300d0.41d2.6d111-44-4Bis(2-chloroethyl)ether1.9d14d6.6d48d75-27-4Bromodichloromethane450,000g450,000g6,700h6,700h75-25-2Bromoform1,800d13,000d170d1,300d71-36-3Butano129,000g29,000g74,000h74,000h78-93-32-Butanone (MEK) 380,000g380,000g220,000h220,000h75-15-0Carbon disulfide81,000c500,000c170c820c56-23-5Carbon tetrachloride24d180d0.052d0.31d108-90-7Chlorobenzene8,300c51,000c130c470h124-48-1Chlorodibromomethane57,000g57,000g2,600h2,600h67-66-3Chloroform12d87d0.17d1.1d95-57-82-Chlorophenol17,000g17,000g22,000h22,000h75-99-0Dalaponf1,500g1,500g900,000h900,000h96-12-81,2-Dibromo-3chloropropanef0.17d1.3d0.029d0.21d106-93-41,2-Dibromoethane1.1d7.9d0.073d0.52d95-50-11,2-Dichlorobenzene11,000g11,000g160h160h106-46-71,4-Dichlorobenzene8,400g8,400g79h79h75-71-8Dichlorodifluoromethane32,000c200,000c6.8c33c75-34-31,1-Dichloroethane81,000c500,000c750c4,100c107-06-21,2-Dichloroethane10d76d0.50d3.5d75-35-41,1-Dichloroethylene27,000c160,000c61c300c156-59-2cis-1,2-Dichloroethylene1,100,000g1,100,000g3,500h3,500h156-60-5trans-1,2-Dichloroethylene10,000c63,000c58c310c78-87-51,2-Dichloropropane36d260d0.67d4.5d542-75-61,3-Dichloropropylene (cis + trans)110d830d0.42d2.6d123-91-1p-Dioxane15d110d140d1,000d100-41-4Ethylbenzene150d1,100d1.3d8.1d76-44-8Heptachlor0.97d7.1d0.058d0.18h118-74-1Hexachlorobenzene0.28g0.28g0.0062h0.0062h7-47-4Hexachlorocyclopentadiene86c530c0.29c1.5c67-72-1Hexachloroethane2,800g2,800g50h50h78-59-1Isophorone3,400g3,400g12,000h12,000h98-82-8Isopropylbenzene (Cumene) 30,000g30,000g6.2c30c7439-97-6Mercuryi22g22g0.060h0.060h74-83-9Methyl bromide830c5,100c6.1c33c1634-04-4Methyl tertiary-butyl ether420,000c1,200,000g30,000c51,000h75-09-2Methylene

chloride590d4,400d12d84d91-57-62-Methylnaphthalene530q530q25h25h95-48-72-Methylphenol (o-cresol)1,800g1,800g26,000h26,000h91-20-3Naphthalene14d100d1.8d13d98-95-3Nitrobenzene9.0d66d23d170d621-64-7n-Nitrosodin-propylamine0.18d1.3d3.3d24d108-95-2Phenol1,500g1,500g83,000h83,000h1336-36-3Polychlorinated biphenyls (PCBs)---e---e100-42-5Styrene34,000g34,000g310h310h127-18-4Tetrachloroethylene66d490d0.26d1.6d108-88-3Toluene140,000g140,000g530h530h120-82-11,2,4-Trichlorobenzene800c4,300g35h35h71-55-61,1,1-Trichloroethane770,000c870,000g1,300h1,300h79-00-51,1,2-Trichloroethane170,000g170,000g4,400h4,400h79-01-6Trichloroethylene180d1,300d1.1d6.7d75-69-4Trichlorofluoromethane97,000c600,000c62c300c108-05-4Vinyl acetate28,000c170,000c2,500c15,000c75-01-4Vinyl chloride30d440d0.065d0.75d108-38-3m-Xylene17,000d52,000c160c160h95-47-6o-Xylene14,000d41,000c170c180h106-42-3p-Xylene16,000d55,000c140c160h1330-20-7Xylenes (total)f17,000d49,000c96c110h Chemical Name and Remediation Objective Notations

a Compliance is determined by meeting both the soil gas remediation objectives and the groundwater remediation objectives. See Sections 742.505 and 742.515.

b Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.

c Calculated values correspond to a target hazard quotient of 1.

.

d Calculated values correspond to a cancer risk level of 1 in 1,000,000.

e PCBs are a mixture of different congeners. The appropriate values to use for the physical/chemical and toxicity parameters depend on the congeners present at the site. Persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation objectives is desired

f Groundwater remediation objective calculated at 25°C. For Dalapon and 1,2-Dibromo-3-chloropropane, the critical temperature (Tc) and enthalpy of vaporization at the normal boiling point (Hv,b) are not available. For Xylenes (total), the enthalpy of vaporization at the normal boiling point (Hv,b) is not available.

g The value shown is the Cvsat value of the chemical in soil gas. The Cvsat of the chemical becomes the remediation objective if the calculated value exceeds the Cvsat value or if there are no toxicity criteria available for the inhalation route of exposure.

h The value shown is the solubility of the chemical in water. The solubility of the chemical becomes the remediation objective if the calculated value exceeds the solubility or if there are no toxicity criteria available for the inhalation route of exposure.

i Value for the inhalation exposure route is based on Reference Concentration for elemental Mercury (CAS No. 7439-97-6). Inhalation remediation objectives only apply at sites where elemental Mercury is a contaminant of concern.

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_) Section 742.APPENDIX C+\_\_\_\_ Tier 2 Illustrations and Tables

## Section 742. Table TABLE A: SSL Equations

Equations for Soil Ingestion Exposure RouteRemediation Objectives for Noncarcinogenic Contaminants (mg/kg)\_(mg/kg)\_S1Remediation Objectives for Carcinogenic Contaminants -Residential (mg/kg)S2Remediation Objectives for Carcinogenic Contaminants -Industrial/ Commercial, Construction Worker (mg/kg)S3 Equations for Inhalation Exposure Route (Organic Contaminants and Mercury)RemediationMercuryRemediation Objectives for Noncarcinogenic Contaminants - Residential, Industrial/ Commercial (mg/kg)S4Remediation Objectives for Noncarcinogenic Contaminants - Construction Worker (mg/kg)S5Remediation Objectives for Carcinogenic Contaminants - Residential, Industrial/ Commercial (mg/kg)S6Remediation Objectives for Carcinogenic Contaminants - Construction Worker (mg/kg)S7Equation for Derivation of the Volatilization Factor - Residential, Industrial/ Commercial, VF (m3/kg)S8Equation for Derivation of the Volatilization Factor - Construction Worker, VF+ (m3/kg)VF' =\_S9Equation for Derivation of Apparent Diffusivity, DA (cm2/s)S10Equations for Inhalation Exposure Route (Fugitive Dusts)Remediation Objectives for Noncarcinogenic Contaminants - Residential, Industrial/Commercial (mg/kg) S11Remediation Objectives for Noncarcinogenic Contaminants - Construction Worker (mg/kg)S12Remediation Objectives for Carcinogenic Contaminants - Residential, Industrial/ Commercial (mg/kg)S13Remediation Objectives for Carcinogenic

Particulate Emission Factor, PEF (m3/kg)S15Equation for Derivation of Particulate Emission Factor, PEF - Construction Worker (m3/kg)

Contaminants - Construction Worker (mg/kg)S14Equation for Derivation of

NOTE: PEF must be the industrial/commercial valueSvalueS16

Equations for the Soil Component of the Groundwater Ingestion Exposure RouteRemediationRoute Remediation Objective (mg/kg)

NOTE: This equation can only be used to model contaminant migration not in the water bearing unit.S17Target Soil Leachate Concentration, Cw (mg/L) $SCw = DF \bullet$ <u>GWobjS</u>18Soil-Water Partition Coefficient, Kd (cm3/g) $SKd = Koc \bullet focS$ 19Water-Filled Soil Porosity,

Tw qw(Lwater/Lsoil)S20Air-Filled Soil Porosity,

Ta qa(Lair/Lsoil)S?a = ? - ?wS21Dilution Factor, DF (unitless)S22Groundwater Remediation ObjectiveObjection for Carcinogenic Contaminants, GWobj (mg/L)S23Total Soil Porosity, h(? Lpore/Lsoil)S24Equation for Estimation of Mixing Zone Depth, d (m)S25

Mass-Limit Equations for Inhalation Exposure Route and Soil Component of the Groundwater Ingestion Exposure RouteMass-Limit Volatilization Factor for the Inhalation Exposure Route - Residential, Industrial/ Commercial, VF (m3/kg)

NOTE: This equation may be used when vertical thickness of contamination is known or can be estimated reliably.S26Mass-Limit Volatilization Factor for <u>the</u> Inhalation Exposure Route - Construction Worker, <u>VF¢VT'</u> - (m3/kg)S27Mass-Limit Remediation Objective for Soil Component of the Groundwater Ingestion Exposure Route (mg/kg)

```
NOTE: This equation may be used when vertical thickness is known or can be
estimated reliably.S28Equation for Derivation of the Soil Saturation Limit,
CsatSCsatS29Equation for the soil gas component of the Outdoor Inhalation
Exposure Route
S30
      (Source: Amended at 36 Ill. Reg. ____, effective
Section 742.APPENDIX C+--- Tier 2 Illustrations and Tables
Section 742. Table TABLE B+--- SSL Parameters
SymbolParameterUnitsSourceParameter Value(s)ATAveraging Time for Noncarcinogens
in Ingestion EquationyrResidential = 6
Industrial/Commercial = 25
Construction Worker = 0.115ATAveraging Time for Noncarcinogens in Inhalation
EquationyrResidential = 30 Equationyr Residential = 30
Industrial/Commercial = 25
Construction Worker = 0.115ATcAveraging Time for CarcinogensyrSSLCarcinogensyr
SSL70BWBody WeightkgResidentialWeightkg Residential = 15, noncarcinogens
                      70, carcinogens
Industrial/Commercial = 70
Construction Worker = 70CsatSoil Saturation Concentrationmg/kgAppendix A, Table
A or Equation S29 in Appendix C, Table AChemical-Specific or Calculated
ValueCwTarget Soil Leachate Concentrationmg/LEquation S18 in Appendix C, Table A-
GroundwaterAGroundwater Standard, Health Advisory concentration, or Calculated
ValuedMixing Zone DepthmSSL or Equation S25 in Appendix C, Table A2 m or
Calculated ValuedaAquifer ThicknessmField MeasurementSite-SpecificdsDepth of
Source
(Vertical thickness of contamination)mField Measurement or EstimationSite-
SpecificDAApparentSpecific
SymbolParameterUnitsSourceParameter Value(s)DAApparent Diffusivitycm2/sEquation
S10 in Appendix C, Table ACalculated ValueDiDiffusivity in Aircm2/sAppendix C,
Table EChemical-SpecificDwDiffusivity in Watercm2/sAppendix C, Table EChemical-
SpecificDFDilution FactorunitlessEquation S22 in Appendix C, Table A20 or
Calculated ValueEDExposure Duration for Ingestion of
CarcinogensyrIndustrial/Commercial = 25
Construction Worker = 1EDExposure Duration for Inhalation of
CarcinogensyrResidential = 30
Industrial/Commercial = 25
Construction Worker = 1EDExposure Duration for Ingestion of
NoncarcinogensyrResidential = 6
Industrial/Commercial = 25
Construction Worker = 1EDExposure Duration for Inhalation of
NoncarcinogensyrResidential = 30
Industrial/Commercial = 25
Construction Worker = 1EDExposure Duration for the Direct Ingestion of
GroundwateryrResidential = 30
Industrial/Commercial = 25
Construction Worker = 1EDM-LExposure Duration for Migration to Groundwater Mass-
Limit Equation S28yrSSL70EFExposure Frequencyd/yrResidential = 350
Industrial/Commercial = 250
Construction Worker = 30F(x) Function dependent on Um/UtunitlessSSLUtunitless
SSL0.194focOrganic Carbon Content of Soilg/gSSL or Field Measurement (See
Appendix C, Table F)Surface Soil = 0.006
Subsurface soil = 0.002, or Site-SpecificGWobjGroundwater Remediation
Remediation Objectivemg/LAppendix B, Table E, 35 IAC 620.Subpart F, or Equation
```

S23 in Appendix C, Table AChemical-Specific or CalculatedH'Henry's Law ConstantunitlessAppendix C, Table EChemical-SpecificiHydraulic Gradientm/mField Measurement (See Appendix C, Table F)Site-SpecificIInfiltration Ratem/yrSSL 0.3IM-LInfiltration Rate for Migration to Groundwater Mass-Limit Equation S28m/yrSSL0.18IFsoil-adj (residential)Age Adjusted Soil Ingestion Factor for Carcinogens(mg-yr)/ (kg-d)SSL114IRsoilSoil Ingestion Ratemg/dResidential = 200 Industrial/Commercial = 50 Construction Worker = 480IRWDaily Water Ingestion RateL/dResidential = 2 Industrial/Commercial = 1KAquifer Hydraulic Conductivitym/yrField Measurement (See Appendix C, Table F)Site-SpecificKd (Non-ionizing organics) Soil-Water Partition Coefficientcm3/g or L/kgEquation S19 in Appendix C, Table ACalculated ValueKd (Ionizing organics)Soil-Water Partition Coefficientcm3/g or L/kgEquation S19 in Appendix C, Table AChemical and pH-Specific (see Appendix C, Table I)Kd (InorganicsIn-organics) Soil-Water Partition Coefficientcm3/g or L/kgAppendix C, Table JChemical and pH-SpecificKocOrganic Carbon Partition Coefficientcm3/g or L/kgAppendix C, Table E or Appendix C, Table IChemical-SpecificKsSaturated Hydraulic Conductivitym/yrAppendix C, Table K Appendix C, Illustration CSite-SpecificLSource Length Parallel to Groundwater FlowmField MeasurementSite-SpecificPEFParticulate Emission Factorm3/kqSSL or Equation S15 in Appendix C, Table AResidential = 1.32 ≛ 109 or Site-Specific Industrial/Commercial = 1.24 \* 109 or Site-SpecificPEF / Particulate Emission Factor adjusted for Agitation (construction worker)m3/kgEquation S16 in Appendix C, Table A using PEF (industrial/commercial)1.24 \* 108 or Site-SpecificQ/C (used in VF equations) Inverse of the mean concentration at the center of a square source(g/m2-s)/ (kg/m3)Appendix C, Table HResidential = 68.81Industrial/Commercial = 85.81 Construction Worker = 85.81Q/C (used in PEF equations) Inverse of the mean concentration at the center of a square source(g/m2-s)/(kg/m3)SSL or Appendix C, Table HResidential = 90.80 Industrial/Commercial = 85.81 Construction Worker = 85.81RfCInhalation Reference Concentrationmg/m3TEPA-(IRIS/HEASTa) Illinois EPA: http://www.epa.state.il.us/land/taco/toxicityvalues.xlsToxicological-Specific (Note: for Construction Workers use subchronic reference concentrations)RfDoOral Reference Dosemg/(kg-d) IEPA (IRIS/HEASTa) Illinois EPA: http://www.epa.state.il.us/land/taco/toxicityvalues.xlsToxicological-Specific (Note: for Construction WorkerWorkers use subchronic reference doses) ROsoilSoil remediation objectivemg/kgEquation S30 in-Appendix C, Table ACalculated valueROsoil gasSoil gas remediation objectivemg/m3Equation S30 in Appendix C, Table ACalculatedvalueSSolubilitySSolubility in Watermg/LAppendix C, Table EChemical-SpecificSFoOral Slope Factor(mg/kg-d)-1<del>IEPA (IRIS/HEASTA)</del> Illinois EPA: http://www.epa.state.il.us/land/taco/toxicity-values.xlsToxicological-SpecificTExposure IntervalsResidential = 9.5 \* 108 Industrial/Commercial = 7.9 \* 108 Construction Worker = 3.6 \* 106TM-L Exposure Interval for Mass-Limit Volatilization Factor Equation S26yrSSL30THQTarget Hazard QuotientunitlessSSL1TRTarget Cancer RiskunitlessResidential = 10-6 at the point of human exposure Industrial/Commercial = 10-6 at the point of human exposure Construction Worker = 10-6 at the point of human exposureUmMean Annual Windspeedm/sSSL4.69URFInhalation Unit Risk Factor(ugug/m3)-1<del>IEPA (IRIS/HEASTA)</del> Illinois EPA: http://www.epa.state.il.us/land/taco/toxicityvalues.xlsToxicological-SpecificUtEquivalent Threshold Value of Windspeed at 7 mm/sSSL11.32VFraction of Vegetative CoverunitlessSSL or Field Measurement0.5 orof Site-SpecificVFVolatilization Factorm3/kgEquation S8 in Appendix C, Table ACalculated ValueVF+\_Volatilization Factor adjusted for Agitationm3/kgEquation S9 in Appendix C, Table ACalculated ValueVFM-LMass-Limit Volatilization

Factorm3/kgEquation S26 in Appendix C, Table ACalculated ValueVF ... M-LMass-Limit Volatilization Factor adjusted for Agitationm3/kgEquation S27 in Appendix C, Table ACalculated Value-Value? Total Soil PorosityLpore/LsoilSSL or Equation S24 in Appendix C, Table A0.43, or Gravel = 0.25Sand = 0.32Silt = 0.40Clay = 0.36, or Calculated ValueqaAirValue?aAir-Filled Soil PorosityLair/LsoilSSL or Equation S21 in Appendix C, Table ASurface Soil (top 1 meter) = 0.28 Subsurface Soil (below 1 meter) = 0.13, orGravel = 0.05Sand = 0.14Silt -= 0.24 Clay = 0.19, or Calculated ValueqwWaterValue?wWater-Filled Soil PorosityLwater/LsoilSSL or Equation S20 in Appendix C, Table ASurface Soil (top 1 meter) = 0.15 Subsurface Soil (below 1 meter) = 0.30, or Gravel = 0.20Sand = 0.18Silt = 0.16Clay = 0.17, orCalculated ValuerbDryValue?bDry Soil Bulk Densitykg/L or g/cm3SSL or Field Measurement (See Appendix C, Table F)1.5, or Gravel = 2.0Sand = 1.8Silt = 1.6Clay = 1.7, or Site-SpecificrsSoilSpecific?sSoil Particle Densityg/cm3SSL or Field Measurement (See Appendix C, Table F)2.65, or Site-SpecificrwWaterSpecific?wWater Densityg/cm3SSL11/(2b+3)Exponential in Equation S20unitlessAppendix C, Table K Appendix C, Illustration CSite-Specific a HEAST = Health Effects Assessment Summary Tables. USEPA, Office of Solid Waste and Emergency Response. EPA/SQO/R 95/036. Updated Quarterly. (Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_ Section 742.APPENDIX C---- Tier 2 Illustrations and Tables Section 742. Table TABLE E: Default Physical and Chemical ParameterseParameters

CAS No.

```
ChemicalSolubilityChemicalSolubility in Water (S) (mg/L)Diffusivity in Air

(Đidi) (cm2/s)Diffusivity in Water (Dw) (cm2/s)Dimensionless Henry's Law

Constant (H')(25oC)Organic Carbon Partition Coefficient (Koc)

(L/kg)First

Order

Degradation Constant

(1)

(d-1)Neutral Organics83-32-9Acenaphthene4.24 0.04217.69E-6 0.00636

7,080 0.003467-64 1Acetone1,000,0000.124 1.14E-50.00159 0.575 0.049515972-60-

8Alachlor242 0.01985.69E-60.00000132 394 No Data116-06-3Aldicarb6,000

0.03057.19E-60.0000000574120.00109309-00-2Aldrin0.18 0.0132 4.86E-

60.006972,450,0000.00059120-12 7Anthracene0.0434 0.0324 7.74E-60.00267 29,500

0.000751912 24 9Atrazine700.02586.69E 60.0000005 451 No Data71 43

2Benzene1,750 0.088 9.80E-6 0.228 58.9 0.0009
```

```
Chemical
Solubility in Water (S)
(mq/L)
Diffusivity in Air (Di)
(cm2/s)
Diffusivity in Water (Dw) (cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
<del>Order</del>
Degradation Constant
(1)
(d-1)56-55-3Benzo(a)anthracene0.00940.0510 9.00E-60.000137-398,000-0.00051205-
99-2Benzo(b)fluoranthene0.00150.0226 5.56E-60.004551,230,000 0.00057207-08-
9Benzo(k)fluoranthene0.00080.0226 5.56E-60.0000341,230,000 0.0001665-85-
OBenzoic Acid3,500 0.0536 7.97E-60.0000631 0.600No Data50-32-
8Benzo(a)pyrene0.00162 0.0439.00E 60.0000463 1,020,000 0.00065111-44-4Bis(2-
chloroethyl)ether17,2000.0692 7.53E 60.000738 15.5 0.0019117 81 7Bis(2-
ethylhexyl)phthalate0.340.03513.66E-60.00000418-15,100,000-0.001875-27-
4Bromodichloromethane6,740 0.0298 1.06E-50.065655.0 No Data75-25-
2Bromoform3, 1000.0149 1.03E 50.021987.1 0.001971-36-3Butano174, 0000.0800 9.30E-
60.0003616.920.0128385-68-7Butyl Benzyl Phthalate2.69 0.0174 4.83E-
60.000051757,5000.0038586-74-8Carbazole7.48-0.0390-7.03E-60.0000006263,390No-
Data
```

CAS No.

```
Chemical
Solubility in Water (S)
(mg/L)
Diffusivity in Air (Di)
(cm2/s)
```

```
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
Order
Degradation Constant
(1)
(d-1)1563-66-2Carbofuran3200.02496.63E-6.0037737No Data75-15-0Carbon-
Disulfide1,190 0.104 1.00E 51.2445.7 No Data56-23-5Carbon Tetrachloride793
0.0780 8.80E-61.25174 0.001957-74 9Chlordane0.0560.0118 4.37E-
60.00199120,0000.00025106-47-8p-Chloroaniline5,3000.0483-1.01E-50.000013666.1No-
Data108 90 7Chlorobenzene472 0.0730 8.70E 60.152219 0.0023124 48
1Chlorodibromomethane2,6000.0196 1.05E 50.032163.1 0.0038567 66
3Chloroform7,920 0.104 1.00E 50.1539.8 0.0003995 57 82 Chlorophenol22,000
0.0501 9.46E 60.016388 No Data218-01 9Chrysene0.0016 0.02486.21E
60.00388398,0000.0003594-75-72,4-D6800.02317.31E-60.000000414510.0038572-54-
84,4'-DDD0.090.0169 4.76E-60.0001641,000,0000.000062
```

. .

```
Chemical
Solubility in Water (S)
(mg/L)
Diffusivity in Air (Di)
\left(\frac{cm^2}{s}\right)
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
<del>Order</del>
Degradation Constant
(1)
(d-1)72-55-94,4'-DDE0.120.0144-5.87E-60.0008614,470,0000.000062-50-29-34,4'-
DDT0.0250.0137 4.95E-60.0003322,630,0000.000062 75-99-0Dalapon900,0000.0414
9.46E-6
               <u>- 0.000002645.8 0.00577553-70-3Dibenzo(a,h)anthracene0.00249</u>
0.0202 5.18E-60.0000006033,800,0000.0003796-12-81,2-Dibromo-3-
chloropropane1,2000.0212 7.02E-60.00615182 0.001925106-93-41,2-
Dibromoethane4,200 0.02878.06E 60.030393 0.00577584-74-2Di-n-butyl
Phthalatel1.2 0.0438 7.86E-60.000000038533,9000.0301395-50-11,2-
Dichlorobenzene1560.0690 7.90E 60.0779617 0.0019106-46-71,4-Dichlorobenzene73.8-
0.0690 7.90E 60.0996617 0.001991 94 13,3 Dichlorobenzidine3.110.0194 6.74E
60.000001647240.0019
```

CAS No.

Chemical Solubility in Water (S)

```
-(mq/L)
Diffusivity in Air (Di)
-(cm2/s)
Diffusivity in Water (Dw)
-(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
Order
Degradation Constant
(1)
(d-1)75-34-31,1-Dichloroethane5,060 0.0742 1.05E-50.2331.6 0.0019107-06-21,2-
Dichloroethane8,520 0.104 9.90E 60.040117.4 0.001975 35-41,1-
Dichloroethylene2,250 0.0900 1.04E 51.0758.9 0.0053156 59 2Cis-1,2-
Dichloroethylene3,5000.0736 1.13E 50.16735.5 0.00024156 60 5Trans 1,2-
Dichloroethylene6,3000.0707 1.19E-50.38552.5 0.00024120-83-22,4-
Dichlorophenol4,5000.0346 8.77E 60.00013147 0.0002778-87-51,2-
Dichloropropane2,8000.0782-8.73E-60.11543.7-0.00027542-75-61,3-Dichloropropylene
(cis + trans)2,8000.0626 1.00E - 50.72645.7 0.06160 - 57 - 1Dieldrin0.1950.0125 4.74E-
60.00061921,4000.0003284-66-2Diethyl Phthalate1,0800.0256 6.35E-
60.00001852880.00619105-67-92,4-Dimethylphenol7,8700.0584-8.69E-60.000082209-
0.049551-28-52,4 Dinitrophenol2,7900.0273 9.06E-60.00001820.010.00132
```

```
Chemical
Solubility in Water (S)
(mg/L)
Diffusivity in Air (Di)
-(cm2/s)
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
<del>Order</del>
Degradation Constant
(1)
(d-1)121-14-22,4 Dinitrotoluene2700.2037.06E-60.000003895.50.00192606-20-22,6-
Dinitrotoluene1820.0327 7.26E-60.000030669.20.0019288-85-7Dinoseb520.02156.62E-
60.00001891,120 0.002817117-84-0Di-n-octyl Phthalate0.020.0151 3.58E-
60.0027483,200,0000.0019115-29-7Endosulfan0.510.0115 4.55E-
60.0004592,1400.07629145-73-3Endothall21,0000.02918.07E-60.00000001070.29No-
Data72-20-8Endrin0.250.0125 4.74E-60.00030812,3000.00032100-41-4Ethylbenzene169
0.0750 7.80E-60.323363 0.003206-44-0Fluoranthene0.2060.03026.35E-
60.00066107,0000.0001986-73-7Fluorene1.980.0363-7.88E-60.0026113,8000.00069176-
44-8Heptachlor0.180.0112 5.69E-660.7 1,410,000 0.131024-57-3Heptachlor
epoxide0.20.0132 4.23E 60.0003983,2000.00063
```

CAS No.

```
Chemical
Solubility in Water (S)
(mg/L)
Diffusivity in Air (Di)
-(cm2/s)
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
Order
Degradation Constant
(1)
(d-1)118-74-1Hexachlorobenzene6.2 0.0542 5.91E-60.0541 55,000 0.00017319-84-
6Alpha-HCH (alpha-BHC)2.00.0142 7.34E-60.0004351,2300.002558-89-9Gamma-HCH-
(Lindane) 6.80.0142 7.34E-60.0005741,0700.002977-47 4Hexachlorocyclo-
Pentadienel.80.0161 7.21E-61.11200,000 0.01267-72-
1Hexachloroethane500.00256.80E-60.1591,780 0.00192193-39-5Indeno(1,2,3-
c,d)pyrene0.0000220.0190 5.66E-60.00006563,470,0000.0004778-59-1Isophorone12,000
0.06236.76E-60.00027246.8 0.012387439-97-6Mercury--- 0.0307 6.30E-6 0.467
   - No Data72-43-5Methoxychlor0.0450.01564.46E-60.00064897,7000.001974-83-
9Methyl Bromide15,200 0.07281.21E-50.25610.5 0.018241634-04-4Methyl tertiary-
butyl ether51,0000.1021.10E-50.024111.5 No Data75-09-2Methylene-
Chloride13,0000.101 1.17E-50.089811.7 0.012
```

```
CAS No.
```

```
Chemical
Solubility in Water (S)
\frac{(mq/L)}{}
Diffusivity in Air (Di)
\left(\frac{cm2}{s}\right)
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kq)First
Order
Degradation Constant
(1)
(d 1) 95 48 72 Methylphenol (o cresol) 26,000 0.0740 8.30E 60.000049291.2
0.049591-20-3Naphthalene31.00.0590 7.50E-60.01982,000 0.002798-95-
3Nitrobenzene2,0900.0760 8.60E-60.00098464.6 0.0017686-30-6N-
Nitrosodiphenylamine35.10.03126.35E-60.0002051,2900.01621-64-7N-Nitrosodi-n-
propylamine9,8900.0545 8.17E 60.000092324.0 0.001987 86-
5Pentachlorophenol1,9500.05606.10E-60.000001592-0.00045108-95-2Phenol82,800-
0.0820 9.10E-60.000016328.8 0.0991918 02-1Picloram4300.02555.28E-
60.00000001661.98No Data1336-36-3Polychlorinated biphenyls (PCBs)0.7-
                                                                             -a-
     -a-----a 309,000 No Data129-00-0Pyrene0.1350.0272 7.24E-
60.000451105,0000.00018122-34-9Simazine50.0277.36E-60.0000000133133No Data100-
42-5Styrene3100.0710 8.00E-60.113776 0.0033
```

```
Chemical
Solubility in Water (S)
(mq/L)
Diffusivity in Air (Di)
-(cm2/s)
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H<sup>1</sup>)
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
Order
Degradation Constant
(1)
(d-1)93-72-12,4,5-TP (Silvex)310.01945.83E 60.00000000325,440No Data127-18-
4Tetrachloroethylene2000.0720 8.20E-60.754155 0.00096108 88-3Toluene526 0.0870-
8.60E-60.272182 0.0118001-35-2Toxaphene0.740.0116 4.34E-60.000246257,000No-
Data120-82-11,2,4-Trichlorobenzene3000.0300 8.23E-60.05821,780 0.001971-55-
61,1,1-Trichloroethane1,330 0.0780 8.80E-60.705110 0.001379-00-51,1,2-
Trichloroethane4,420 0.0780 8.80E-60.037450.10.0009579-01-
6Trichloroethylene1,100 0.0790 9.10E-60.422166 0.0004295 95-42,4,5-
Trichlorophenol1,2000.0291 7.03E-60.0001781,6000.0003888 06-22,4,6-
Trichloropheno18000.0318 6.25E-6 0.000319 381 0.00038108-05-4Vinyl-
Acetate20,0000.0850 9.20E-60.0215.25 No Data57 01-4Vinyl Chloride2,760 0.106
1.23E 61.1118.6 0.00024108-38-3m Xylene161 0.0707.80E 60.301407 0.0019
```

CAS No.

```
Chemical
Solubility in Water (S)
-(mg/L)
Diffusivity in Air (Di)
(em2/s)
Diffusivity in Water (Dw)
(cm2/s) Dimensionless
Henry's Law Constant (H')
(25oC) Organic Carbon Partition Coefficient (Koc)
(L/kg)First
Order
Degradation Constant
(1)
(d-1)95-47-60-Xylene178 0.0871.00E-50.213363 0.0019106-42-3p-Xylene185
0.07698.44E-60.314389 0.00191330-20-7Xylenes (total)186 0.0720 9.34E-60.25260
0.0019
Chemical Abstracts Service (CAS) registry number. This number in the format xxx-
xx x, is unique for each chemical and allows efficient searching on computerized
data bases.
```

```
    a Soil Remediation objectives are determined pursuant to 40 CFR 761, as incorporated by reference at Section 732.104 (the USEPA "PCB Spill Cleanup Policy"), for most sites;
    persons remediating sites should consult with BOL if calculation of Tier 2-soil remediation objectives is desired.
```

Chemical Solubility in Water (S) (mg/L) Diffusivity in Air (Di) (cm2/s) Diffusivity in Water (Dw) (cm2/s)Dimensionless Henry's Law Constant (H') (25oC)Dimensionless\_(25°C)Dimensionless\_Henry's Law Constant (H') (13oC)°C)

For the indoor inhalation exposure routeOrganic Carbon Partition Coefficient (Koc) (L/kg)First Order Degradation Constant (1)(d-1)Vapor Pressure (mm/Hg)Neutral Organics83-32-9Acenaphthene3.60E+004.76E-027.69E-066.60E-03------b6.30E+033.40E-032.50E-0367-64-1Acetonel.00E+061.24E-011.14E-051.60E-039.73E-047.80E-014.95E-022.30E+0215972-60-8Alachlor2.40E+022.13E-025.28E-063.40E-06-------b3.20E+03No Data2.20E-05116-06-3Aldicarb6.03E+033.18E-027.24E-065.90E-08------b1.29E+011.09E-033.47E-05309-00-2Aldrin1.70E-021.96E-024.86E-067.00E-03----b2.50E+055.90E-046.00E-06120-12-7Anthracene4.30E-023.85E-027.74E-062.70E-03------b2.50E+047.50E-042.70E-061912-24-9Atrazine7.00E+012.59E-026.67E-069.68E-08-------b3.63E+02No Data2.70E-0771-43-2Benzene1.80E+038.80E-021.02E-052.30E-011.34E-015.00E+019.00E-049.50E+01 56-55-3Benzo(a)anthracene9.40E-035.10E-029.00E-061.39E-04-----b4.00E+055.10E-041.10E-07205-99-2Benzo(b)fluoranthene1.50E-032.23E-025.56E-064.55E-03----b1.05E+065.70E-045.00E-07207-08-9Benzo(k)fluoranthene8.00E-042.23E-025.56E-063.40E-05-----b1.00E+061.60E-042.00E-0965-85-0Benzoic Acid3.40E+037.02E-027.97E-061.56E-06-----b1.21E+00dNo Data7.00E-0450-32-8Benzo(a)pyrene1.60E-034.30E-029.49E-064.50E-05----b7.90E+056.50E-045.50E-09111-44-4Bis(2chloroethyl) ether1.72E+044.13E-027.53E-067.40E-042.94E-041.26E+011.90E-031.55E+00117-81-7Bis(2-ethylhexyl)phthalate3.40E-013.51E-023.66E-064.10E-06-------b1.00E+051.80E-036.80E-0875-27-4Bromodichloromethane6.70E+035.61E-021.06E-056.60E-023.71E-025.00E+01No Data5.00E+0175-25-2Bromoform3.10E+031.49E-021.03E-052.19E-021.06E-029.12E+011.90E-035.51E+0071-36-3Butanol7.40E+048.00E-029.30E-063.61E-041.55E-046.00E+001.28E-027.00E+0078-93-32-Butanone (MEK)2.20E+058.08E-029.8E-062.30E-031.32E-032.00E+004.95E-029.50E+0185-68-7Butyl Benzyl Phthalate2.70E+001.99E-024.89E-065.30E-05----b6.30E+043.85E-038.30E-0686-74-8Carbazole1.20E+004.17E-027.45E-063.60E-06-----b4.00E+03No Data7.00E-04 1563-66-2Carbofuran3.20E+022.37E-025.95E-061.27E-07-----b1.91E+02No Data4.85E-0675-15-0Carbon Disulfide1.20E+031.04E-011.00E-051.23E+008.06E-016.30E+01No Data3.60E+0256-23-5Carbon Tetrachloride7.90E+027.80E-028.80E-061.23E+007.48E-012.00E+021.90E-031.20E+0257-74-9Chlordane5.60E-021.79E-024.37E-062.00E-03------b2.50E+052.50E-049.80E-06106-47-8p-Chloroaniline5.30E+036.99E-021.01E-054.76E-

05-----b6.31E+01No Data1.23E-02108-90-7Chlorobenzene4.70E+027.30E-028.70E-061.50E-017.93E-022.00E+022.30E-031.20E+01124-48-1Chlorodibromomethane2.60E+033.66E-021.05E-053.20E-022.07E-026.92E+013.85E-034.90E+0067-66-3Chloroform 7.90E+031.04E-011.00E-051.50E-019.18E-025.00E+013.90E-042.00E+0295-57-82-Chlorophenol 2.20E+046.61E-029.46E-061.60E-027.28E-035.93E+01dNo Data2.34E+00218-01-9Chrysene 6.30E-032.44E-026.21E-063.90E-03-----b4.00E+053.50E-046.20E-0994-75-72,4-D 6.77E+025.88E-026.49E-064.18E-07-----b5.75E+023.85E-036.00E-0772-54-84,4'-DDD 9.00E-022.27E-025.79E-061.60E-04----b7.90E+056.20E-056.70E-07 72-55-94,4'-DDE 1.20E-012.38E-025.87E-068.60E-04-----b4.00E+056.20E-056.00E-0650-29-34,4'-DDT 2.50E-021.99E-024.95E-063.30E-04-----b2.00E+066.20E-051.60E-0775-99-0Dalapon 9.00E+056.08E-029.45E-062.64E-06NA4.80E+005.78E-031.90E-0153-70-3Dibenzo(a,h)anthracene 2.50E-032.11E-025.24E-066.10E-07----b2.50E+063.70E-041.00E-1096-12-81,2-Dibromo-3-chloropropane 1.20E+032.68E-027.02E-066.20E-03cNA7.90E+011.93E-035.80E-01106-93-41,2-Dibromoethane 4.00E+034.37E-028.44E-063.00E-021.54E-025.00E+015.78E-031.30E+0184-74-2Di-nbutyl Phthalate 1.10E+014.38E-027.86E-067.40E-05-----a4.00E+043.01E-027.30E-051918-00-9Dicamba 4.50E+032.37E-025.95E-062.18E-09-----a2.95E+00No Data3.38E-0595-50-11,2-Dichlorobenzene 1.56E+026.90E-027.90E-067.79E-023.56E-025.75E+021.90E-031.36E+00106-46-71,4-Dichlorobenzene 7.90E+016.90E-027.90E-069.80E-024.69E-027.90E+021.90E-031.00E+0091-94-13,3-Dichlorobenzidine 3.10E+002.59E-026.74E-061.60E-07----a2.82E+031.90E-033.71E-0875-71-8Dichlorodifluoromethane 2.80E+027.60E-021.08E-051.41E+018.14E+006.17E+011.92E-034.85E+03 75-34-31,1-Dichloroethane 5.10E+037.42E-021.05E-052.30E-011.42E-013.20E+011.90E-032.30E+02107-06-21,2-Dichloroethane 8.50E+031.04E-029.90E-064.00E-022.29E-022.00E+011.90E-037.90E+0175-35-41,1-Dichloroethylene 2.30E+039.00E-021.04E-051.10E+007.10E-015.00E+015.30E-036.00E+02156-59-2Cis-1,2-Dichloroethylene 3.50E+038.86E-021.13E-051.70E-011.00E-014.00E+012.40E-042.00E+02156-60-5Trans-1,2-Dichloroethylene 6.30E+037.03E-021.19E-053.90E-012.43E-015.00E+012.40E-043.30E+02120-83-22,4-Dichlorophenol 4.50E+034.89E-028.77E-061.30E-04----a7.32E+02d2.70E-046.70E-0278-87-51,2-Dichloropropane 2.80E+037.82E-028.73E-061.10E-016.52E-025.00E+012.70E-045.20E+01542-75-61,3-Dichloropropylene (cis + trans) 2.80E+036.26E-021.00E-057.40E-013.98E-012.00E+016.10E-023.40E+0160-57-1Dieldrin 2.00E-011.92E-024.74E-066.2E-04----a2.50E+043.20E-045.9E-0684-66-2Diethyl Phthalate 1.10E+032.49E-026.35E-061.80E-05-----a3.20E+026.19E-031.60E-03105-67-92,4-Dimethylphenol 7.90E+036.43E-028.69E-068.20E-05----a2.00E+024.95E-029.80E-0275-71-81,3-Dinitrobenzene 8.60E+024.55E-028.46E-062.30E-07----a3.20E+011.92E-039.00E-0451-28-52,4-Dinitrophenol 2.79E+032.73E-029.06E-061.82E-05----a3.24E+011.32E-035.10E-03 121-14-22,4-Dinitrotoluene 2.70E+022.03E-017.06E-063.80E-06----a8.90E+011.92E-031.47E-04606-20-22,6-Dinitrotoluene 1.82E+023.70E-027.76E-063.06E-05-----a4.90E+011.92E-035.67E-0488-85-7Dinoseb 5.20E+012.45E-026.25E-061.87E-05-----a9.17E+01d2.82E-037.50E-05117-84-0Di-n-octyl Phthalate 2.00E-021.73E-024.17E-062.74E-03-----al.30E+051.90E-032.60E-06123-91-1p-Dioxane 1.00E+062.29E-011.02E-051.97E-041.07E-047.20E-011.92E-033.81E+01115-29-7Endosulfan 5.10E-011.85E-024.55E-064.51E-04----a5.00E+037.63E-021.00E-05145-73-3Endothall 2.10E+042.91E-028.07E-061.58E-14----a7.59E+01No Data1.57E-1072-20-8Endrin 2.50E-011.92E-024.74E-63.08E-04-----a3.20E+043.20E-043.00E-06100-41-4Ethylbenzene 1.70E+027.50E-027.80E-063.24E-011.64E-013.20E+023.00E-039.60E+00206-44-0Fluoranthene 2.06E-012.51E-026.35E-066.60E-04----a7.40E+041.90E-041.23E-0886-73-7Fluorene 2.00E+004.40E-027.88E-062.62E-03-----a1.30E+046.91E-046.30E-0476-44-8Heptachlor 1.80E-012.23E-025.69E-066.07E-021.73E-023.00E+031.30E-014.00E-041024-57-3Heptachlor epoxide 2.00E-012.19E-025.57E-063.90E-04----a2.00E+056.30E-041.90E-05 118-74-1Hexachlorobenzene 6.20E-035.42E-025.91E-065.33E-021.35E-022.00E+041.70E-041.80E-05319-84-6Alpha-HCH (alpha-BHC)2.00E+002.04E-025.04E-064.51E-04-----

a5.00E+032.50E-034.50E-0558-89-9Gamma-HCH (Lindane) 7.30E+002.75E-027.34E-065.74E-04-----a3.00E+032.90E-034.10E-042691-41-0High Melting Explosive, Octogen (HMX) 5.00E+002.69E-027.15E-068.67E-103.55E-081.40E+00No Data3.30E-1477-47-4Hexachlorocyclo-

Pentadienepentadiene\_1.80E+002.79E-027.21E-061.11E+004.22E-011.20E+041.20E-025.96E-0267-72-1Hexachloroethane 5.00E+012.50E-036.80E-061.59E-017.26E-021.50E+031.92E-032.10E-01193-39-5Indeno(1,2,3-c,d)pyrene 2.20E-052.25E-025.66E-066.56E-05-----a3.10E+064.70E-041.00E-1078-59-11sophorone 1.20E+046.23E-026.76E-062.72E-041.12E-042.50E+011.24E-024.38E-0198-82-8Isopropylbenzene (Cumene) 6.10E+016.50E-027.10E-064.92E+012.10E+011.02E+034.33E-024.50E+0093-65-2Mecoprop (MCPP) 8.95E+022.40E-026.05E-067.70E-09-----al.84E+01d3.85E-032.44E-057439-97-6Mercury 6.00E-027.14E-023.01E-054.51E-011.59E-018.70E+03No Data2.00E-0372-43-5Methoxychlor 4.50E-021.84E-024.46E-066.56E-04-----a5.00E+041.90E-036.00E-0774-83-9Methyl Bromide 1.50E+047.28E-021.21E-052.56E-011.79E-011.00E+011.82E-021.62E+031634-04-4Methyl tertiary-butyl ether 5.10E+048.59E-021.10E-052.42E-021.50E-021.00E+01No Data2.50E+0275-09-2Methylene Chloride 1.30E+041.01E-011.17E-059.02E-025.70E-021.30E+011.20E-024.30E+02 93-65-22-Methylnaphthalene 2.50E+015.22E-027.75E-062.10E-026.95E-031.60E+03No Data6.80E-0295-48-72-Methylphenol (o-cresol) 2.60E+047.40E-028.30E-064.92E-052.00E-054.20E+014.95E-022.99E-0191-20-3Naphthalene 3.10E+015.90E-027.50E-061.97E-028.29E-035.00E+022.70E-038.50E-0298-95-3Nitrobenzene 2.09E+037.60E-028.60E-069.84E-043.99E-044.00E+011.76E-032.40E-0186-30-6N-Nitrosodiphenylamine 3.50E+012.83E-027.19E-062.10E-04-----al.00E+031.00E-026.70E-04621-64-7N-Nitrosodi-n-propylamine 9.89E+035.87E-028.17E-069.20E-055.48E-051.45E+011.90E-031.30E-0187-86-5Pentachlorophenol 2.00E+035.60E-026.10E-069.84E-07----a2.77E+03d4.50E-043.20E-05108-95-2Phenol 8.30E+048.20E-029.10E-061.64E-056.67E-062.00E+019.90E-022.80E-011918-02-1Picloram 4.30E+022.26E-025.64E-062.19E-12-------a2.00E+00No Data7.21E-111336-36-3Polychlorinated biphenyls (PCBs) -----a---1.40E+002.77E-027.24E-064.51E-04-----a6.31E+041.80E-044.60E-06121-82-4Royal Demolition Explosive, Cyclonite (RDX) 5.97E+013.11E-028.49E-062.01E-11----a7.20E+00No Data4.10E-09122-34-9Simazine 6.20E+002.48E-026.28E-063.80E-08-----al.32E+02No Data2.21E-08100-42-5Styrene 3.10E+027.10E-028.00E-061.11E-015.48E-033.16E+023.30E-036.10E+0093-72-12,4,5-TP (Silvex) 7.10E+012.30E-025.83E-063.71E-07----a5.50E+03No Data9.97E-06 127-18-4Tetrachloroethylene 2.00E+027.20E-028.20E-067.38E-014.00E-016.31E+029.60E-041.90E+01108-88-3Toluene 5.30E+028.70E-028.60E-062.71E-011.49E-011.58E+021.10E-022.80E+018001-35-2Toxaphene7.40E-012.16E-025.51E-062.46E-04------a5.01E+04No Data9.80E-07120-82-11,2,4-Trichlorobenzene3.50E+013.00E-028.23E-065.74E-022.38E-021.58E+031.90E-034.30E-0171-55-61,1,1-Trichloroethane1.30E+037.80E-028.80E-066.97E-014.21E-011.26E+021.30E-031.20E+0279-00-51,1,2-Trichloroethane4.40E+037.80E-028.80E-063.73E-021.98E-025.01E+019.50E-042.30E+0179-01-6Trichloroethylene1.50E+037.90E-029.10E-064.10E-012.41E-011.00E+024.20E-047.30E+0175-69-4Trichlorofluoromethanel.10E+038.70E-029.70E-063.98E+002.69E+001.30E+029.63E-048.00E+0295-95-42,4,5-Trichlorophenol1.20E+032.91E-027.03E-061.78E-04----a2.68E+03d3.80E-042.40E-0288-06-22,4,6-Trichlorophenol8.00E+022.61E-026.36E-063.53E-04-----a8.78E+02 d3.80E-042.00E-02108-05-4Vinyl Acetate2.00E+048.50E-029.20E-062.09E-021.18E-024.57E+00No Data9.00E+0199-35-41,3,5-Trinitrobenzene2.80E+022.41E-026.08E-063.30E-10-----a1.60E+01No Data6.40E-06118-96-72,4,6-Trinitrotoluene (TNT)1.24E+022.94E-027.90E-064.87E-09-----a3.72E+011.92E-032.02E-0657-01-4Vinyl Chloride8.80E+031.06E-011.23E-061.11E+008.14E-011.58E+012.40E-043.00E+03108-38-3m-Xylene1.60E+027.00E-027.80E-062.99E-011.52E-013.98E+021.90E-038.50E+00 95-47-60-Xylenel.80E+028.70E-021.00E-052.13E-011.07E-013.16E+021.90E-

036.60E+00106-42-3p-Xylene1.60E+027.69E-028.44E-063.16E-011.59E-013.16E+021.90E-

038.90E+001330-20-7Xylenes (total)1.10E+027.35E-029.23E-062.71E-01NA3.98E+021.90E-038.00E+00 Chemical Abstracts Service (CAS) registry number. This number in the format xxxxx-x, is unique for each chemical and allows efficient searching on computerized data bases.databases.

a Soil remediation objectives are determined pursuant to 40 CFR 761, as incorporated by reference at Section 742.210(b) (the USEPA "PCB Spill Cleanup Policy"), for most sites; persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation objectives is desired. PCBs are a mixture of different congeners. The appropriate values to use for the physical/chemical parameters depend on congeners present at the site.-

b Dimensionless Henry's Law Constant at 13°C is not calculated because the chemical is not volatile and does not require evaluation under the indoor inhalation exposure route.

c Dimensionless Henry's Law Constant = 20°C

d These chemicals are ionizing and its Koc value will change with pH. The Koc values listed in this table is the effective Koc at pH of 6.8. If the sitespecific pH is <u>values</u> value other than 6.8, the Koc value listed in <u>Section</u> 742, Appendix C, Table I should be used.

e The values in this table were taken from the following sources (in order of preference): SCDMS online database (http://www.epa.gov/superfund/sites/npl/hrsres/tools/scdm.htm); CHEMFATE online database (http://www.srcinc.com/what-we-do/databaseforms.aspx?id=381); PhysProp online database (http://www.srcinc.com/what-we-do/databaseforms.aspx?id=386); Water9 (http://www.epa.gov/ttn/chief/software/water/) for diffusivity values; and Handbook of Environmental Degradation Rates by P.H. Howard (1991) for first order degradation constant values.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_) Section 742.APPENDIX C- Tier 2 Illustrations and Tables Section 742. Table TABLE F. Methods for Determining Physical Soil Parameters Methods for Determining Physical Soil Parameters ParameterSampling LocationaMethod?b (soil bulk density)SurfaceASTM - D 1556-90 Sand Cone MethodbASTM - D 2167-94 Rubber Balloon MethodbASTM - D 2922-91 Nuclear MethodbSubsurfaceASTM - D 2937-94 Drive Cylinder Methodb?s (soil particle density)Surface or SubsurfaceASTM - D 854-92 Specific Gravity of SoilbwSoilbw (moisture content)Surface or SubsurfaceASTM - D 4959-89 (Reapproved 1994) StandardbASTM -D D 4643-93 Microwave OvenbASTM -D D2216-92 Laboratory DeterminationbASTM -D D3017-88 (Reapproved 1993) Nuclear MethodbEquivalent USEPA Method (e.g., sample preparation procedures described in methods 3541 or 3550) foc (fraction organic carbon content) Surface or SubsurfaceASTM - D 2974-00

Moisture, Ash, and Organic <u>MatterbMatter</u> appropriately adjusted to estimate the fraction of organic carbon as stated in Nelson and Sommers (1982)b ? or <u>PTTT</u> (total soil porosity)Surface or Subsurface (calculated)Equation S24 in Appendix C, Table A for SSL Model, or Equation R23 in Appendix C, Table C for RBCA Model, or Equation J&E 16 in Appendix C, Table L for J&E <u>Model?aModelTa</u> or <u>PasTas</u> (airfilled soil porosity)Surface or Subsurface (calculated)Equation S21 in Appendix C, Table A for SSL Model, or Equation R21 in Appendix C, Table C for RBCA Model, or Equation J&E 18 in Appendix C, Table L for J&E <u>Model?wModelTw</u> or <u>PwsTws</u> (water-filled soil porosity)Surface or Subsurface (calculated)Equation S20 in Appendix C, Table A for SSL Model, or Equation R22 in Appendix C, Table C for RBCA Model, or Equation R22 in Appendix C, Table C for RBCA Model, or Equation R22 in Appendix C, Table C for RBCA Model, or Equation S20 in Appendix C, Table A for SSL Model, or Equation R22 in Appendix C, Table C for RBCA Model, or Equation J&E 17 in Appendix C, Table L for J&E <u>Model</u>

ASTM D 5084 90Flexible Wall PermeameterbKModelK (hydraulic conductivity)Surface or SubsurfacePumpSubsurfaceASTM-D 5084-90 Flexible Wall PermeameterbPump TestSlug Testi (hydraulic gradient)Surface or SubsurfaceField Measurement This is the location where the sample is collected а As incorporated by reference in Section 742.120. b (Source: Amended at 36 Ill. Reg. \_, effective \_\_\_\_) Section 742.APPENDIX C+--- Tier 2 Tables Section 742. Table TABLE L:--- J&E Equations Indoor air remediation objectives (mg/m3) For carcinogenic contaminants J&E1For noncarcinogenic contaminants J&E2To convert mg/m3 from parts per million volume 24.45 equals the molar volume of air in liters at normal temperature Note: (25°C) and pressure (760 mm HgmmHg).J&E3Soil gas remediation objective (mg/m3) J&E4Soil Vapor Saturation Limit (mg/m3-air)J&E5Groundwater remediation objectives J&E6Attenuation factor Attenuation factor when the mode of contaminant transport is both diffusion and advection Qsoil = 83.33 cm3/secJ&E7Attenuation factor when the mode of contaminant transport is diffusion only Qsoil= 0 cm3/sec J&E8Total overall effective diffusion coefficient for vapor transport in porous media for multiple soil layers (cm2/s)J&E9aInaIn Equation J&E9a, the following condition must be satisfied:J&E9b Source to building separation (cm)J&E10Effective diffusion coefficient for each soil layer (cm2/s)J&E11 Surface area of enclosed space at or below grade (cm2) For a slab-on-grade buildingJbuildingJ&E12aSurface arearea of enclosed space at or below grade (cm2)For a building with a basementJ&E12bBuilding ventilation rate (cm3/s)J&E13 Area of total cracks (cm2) J&E14Effective diffusion coefficient through the cracks (cm2/s)

4

J&E15Total porosity JporosityJ&E16Water-filled soil porosityJporosityJ&E17Airfilled soil porosityJporosityJ&E18

(Source: Added at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

Section 742. APPENDIX C Tier 2 Tables

Section 742. Table TABLE M: J&E Parameters

Symbol Parameter Units Parameter Units SourceTier 1 or Calculated ValueABSurface area of enclosed space at or below gradecm2Equation J&E 12a or 12b, Appendix C, Table <u>LResidentialLResidential</u> = 1 x 106 Industrial/Commercial = 4.0 x 106AcrackArea of total crackscm2Equation J&E 14, Appendix C, Table <u>LCalculatedLCalculated</u> ValueATcAveraging time for <u>carcinogensyearSSLcarcinogensyearSSL</u>, May <u>199670199670</u>ATncAveraging time for <u>noncarcinogensyearnoncarcinogensyearATnc = EDResidential = 30</u> <u>ATnc= ED</u>

Residential = 30
Industrial/Commercial = 25

Cvsat SoilCvsatSoil vapor saturation limitmg/m3-airEquation J&E 5, Appendix C, Table LChemical-Specific or Calculated ValueDcrackeffEffective diffusion coefficient through the crackscm2 /sEquation/sEquation J&E 15, Appendix C, Table LCalculatedLCalculated ValueDiDiffusivity in aircm2 /s Appendix/sAppendix C, Table E

Chemical-SpecificDieffEffectiveEChemical-SpecificDieffEffective diffusion coefficient for each soil layer cm2 /sEquationlayercm2/sEquation J&E 11, Appendix C, Table L

```
Calculated Value
```

DsourceDistanceLCalculated ValueDsourceDistance from ground surface to top of contamination cm Field MeasurementSoilcontaminationcmField MeasurementSoil Contamination = 152.4 Groundwater Contamination = 304.8 Site-Specific DTeffTotalSpecificDTeffTotal overall effective diffusion coefficientemcoefficientem2 / sEquation J&E 9a, Appendix C, Table LCalculated ValueDwDiffusivity in watercm2 / sAppendix / sAppendix C, Table EChemicalEChemical-SpecificEDExposure durationyearResidentialdurationyearResidential: SSL, May 1996 Industrial/Commercial: SSL 2002Residential = 30 Industrial/Commercial = 25<u>EFExposure</u> frequency day/<del>yearResidential</del>vearResidential: SSL, May 1996 Industrial/Commercial: SSL 2002Residential = 350 Industrial/ Commercial = 250ERAir exchange rateexchanges per hour **<u>Illinois EPAResidentialhourIllinois EPAResidential</u> = 0.53 Industrial/** Commercial = 0.93focFraction organic carbon content g/gSSLcontentg/gSSL, May 1996, or Field Measurement Appendix C, Table F0.002 or Site-Specific HBHeight of buildingem Illinois EPASlab on GradeSpecificHBHeight of buildingcmIllinois EPASlab-on-Grade Residential = 244 Industrial/ Commercial = 305 or Site-Specific in Tier 3 Basement Residential = 427 Industrial / Commercial = 488 or Site-Specific in Tier 3H'TSDimensionlessTSDimensionless Henry's law constant at the system (soil) temperature 13°CunitlessAppendix C, Table E Chemical SpecificLB Length of buildingcm

```
Illinois EPAResidential = 1000_13°CunitlessAppendix C, Table EChemical-
<u>SpecificLBLength of buildingcmIllinois EPAResidential = 1000</u>
Industrial/Commercial = 2000 or Site-Specific in Tier 3LcrackSlab thicknessemUS-
EPAthicknesscmUSEPA, Users Guide 2004
10
LFDistance, 200410LFDistance from ground surface to bottom of slab
cmUS EPAslabcmUSEPA, Users Guide 200410, 200410 (slab on grade) 200
(basement) LiThickness LiThickness of soil layer i emFieldicmField MeasurementFor-
capillary fringe for Capillary Fringe, USEPA, 2004Site-Specific
For capillary fringeCapillary Fringe, 37.5 cmLTDistance from bottom of slab to
top of contaminationcmFieldcontaminationcmField Measurement or Equation J&E 10,
Appendix C, Table L 142.4 or Site-Specific
MWMolecularSpecificMWMolecular weightg/mole
Illinois EPA
Chemical-SpecificnTotalmoleIllinois EPAChemical-SpecificnTotal number of layers
of different types of soil vapors migrate through from source to building
(if source is groundwater, include a capillary fringe layer of 37.5 cm as one of
the layers) unitless Field measurementSite unitless Field MeasurementSite-
SpecificPVapor PressureatmAppendix C, Table EChemical-
SpecificQbldgBuildingSpecificQbldgBuilding ventilation
ratecm3/sEquationsEquation J&E 13, Appendix C, Table LSlab_LSlab_on _Grade
Residential = 3.59 \times 104
Industrial/ Commercial = 3.15 x 105
or Site-Specific in Tier 3
Basement
Residential = 6.28 \times 104
Industrial/Commercial = 5.04 \times 105
or Site-Specific in Tier 3QsoilVolumetricOsoilVolumetric flow rate of soil gas
into the enclosed space
cm3/sUS EPAspacecm3/sUSEPA, Users Guide for Evaluating Subsurface Vapor
Intrusion into Buildings, 2004 If LT is less than 5 feet (152 cm),
Qsoil equals 83.3383.33.
If LT is 5 feet (152 cm) or greater, Qsoil equals zero 🔔
An input value of zero requires an institutional control. See Section 742.505(b)
and (c). RIdeal gas constantatm-L/mol-KUS EPAKUSEPA, Users Guide_ 20040.08206
RfCReferenceRfCReference concentrationuquq/m3Illinois EPA:
http://www.epa.state.il.us/land/taco/toxicity-values.xls-
Toxicological Specific ROgwGroundwaterxlsToxicological-SpecificROgwGroundwater
remediation objectivemg/LAppendixLAppendix B, Table E, or Equation J&E 6,
Appendix C, Table <u>L-ChemicalLChemical</u>-Specific or Calculated Value
ROindoor airIndoorValueROindoor_airIndoor air remediation
objectivemg/m3Equations J&E 1 and 2, Appendix C, Table \frac{1}{2}
Calculated Value
ROSoilgasSoilLCalculated ValueROsoilgasSoil gas remediation
objectivemg/m3Equation J&E 4, Appendix C, Table LCalculated LCalculated
ValueSSolubility in watermg/LAppendixLAppendix C, Table EChemicalEChemical-
SpecificTTemperature KUS EPA VUSEPA, Users Guide 2004286 (converted from
13oC) THQTarget hazard quotient for a chemicalunitless
SSL, May 1996
1TRTargetchemicalunitlessSSL, May 19961TRTarget risk or the increased chance of
developing cancer over a lifetime due to exposure to a
```

chemicalunitlessSSL chemicalunitlessSSL, May 1996Residential = 10-6 at the point of human exposure Industrial/Commercial = 10-6 at the point of human exposure URFUnitexposureURFUnit risk factor(ugug/m3) -1Illinois EPA: http://www.epa.state.il.us/land/taco/toxicity-values.xls-Toxicological-Specificw FloorxlsToxicological - SpecificwFloor-wall seam gap cmUS EPAgapcmUSEPA, Users Guide, 20040.1 WMoisture contentg of water/g of soilField Measurement, Appendix C, Table FSite-SpecificSpecificWBWidth of buildingcmIllinois EPAResidential = 1000 ₩B Width of buildingem Illinois EPA Residential = 1000 Industrial/ Commercial = 2000 or Site-Specific in Tier 3aAttenuation factorunitlessEquationsfactorunitlessEquations J&E 7 or 8, Appendix C, Table LSite-SpecificqaAirLSite-SpecificTaAir-filled soil porositycm3/cm3SSL, May 1996 or Equation J&E 18, Appendix C, Table L0.28 or Calculated ValueqaValueTa, crackAirfilled porosity for soil in crackscm3/cm3SSL, May 1996 or Equation J&E 18, Appendix C, Table L0.13qa?a, iAir-filled porosity of soil layer icm3/cm3SSL, May 1996 or Equation J&E 18, Appendix C, Table L0.13 or Calculated Value For capillary fringe, qaTa, i = 0.1 qTTT, iqT?T, crackTotal porosity for soil in crackscm3/cm3SSL, May 1996 or Equation J&E 16, Appendix C, Table L0.43qT?T, iTotal porosity of soil layer icm3/cm3SSL, May 1996 or Equation J&E 16, Appendix C, Table L0.43 or Calculated ValueqwWater-?wWaterfilled soil porositycm3/cm3SSL, May 1996 or Equation J&E 17, Appendix C, Table L0.15 or Calculated Valueqw?w, crackWaterfilled porosity for soil in crackscm3/cm3SSL, May 1996 or Equation J&E 17, Appendix C, Table L0.15qw?w,iWater-filled porosity of soil layer icm3/cm3SSL, May 1996 or Equation J&E 17, Appendix C, Table L For capillary fringe, US EPA, Users Guide 20040.1520040.15 or Calculated Value For capillary fringe = 0.375 or 0.9 qT, iqbDry?bDry soil bulk densityg/cm3SSL, May 1996 or Field Measurement, Appendix C, Table F1.5 or Calculated ValueqsValue?s, iSoil particle densityg/cm3SSL, May 1996 or Field Measurement, Appendix C, Table F2.65 or Calculated ValueqwDensityValue?wDensity of waterg/cm3Illinois EPA1 (Source: Added at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_\_) Section 742.APPENDIX F- Environmental Land Use Control PREPARED BY: Name: -\_\_\_ Address: RETURN TO: Name: -Address:
#### THE ABOVE SPACE FOR RECORDER'S OFFICE

Model Environmental Land Use Control

WHEREAS, 415 ILCS 5/58.17 and 35 Ill. Adm. Code 742 provide for the use of an ELUC as an institutional control in order to impose land use limitations or requirements related to environmental contamination so that persons conducting remediation can obtain a No Further Remediation determination from the Illinois Environmental Protection Agency ("IEPA"). The reason for an ELUC is to ensure protection of human health and the environment. The limitations and requirements contained herein are necessary in order to protect against exposure to contaminated soil, or groundwater, or soil gas both, that may be present on the property as a result of [VARIABLE] activities. Under 35 Ill. Adm. Code 742, the use of risk-based, site-specific remediation objectives may require the use of an ELUC on real property, and the ELUC may apply to certain physical features (e.g., engineered barriers, indoor inhalation building control technologies, monitoring wells, caps, etc.).

WHEREAS, \_\_\_\_\_ [the party performing remediation] intends to request torequest risk-based, site specific soil, and groundwater, or soil gas remediation objectives from IEPA under 35 Ill. Adm. Code 742 to obtain riskbased closure of the site, identified by Bureau of Land [10-digit LPC or Identification number] \_\_\_\_\_, utilizing an ELUC.

NOW, THEREFORE, the recitals set forth above are incorporated by reference as if fully set forth herein, and the Property Owner agrees as follows:

Date:-

By:Director

Section One. Property Owner does hereby establish an ELUC on the real estate, <u>situated insituatedin</u> the County of \_\_\_\_\_\_, State of Illinois and further described in Exhibit <u>A attachedAattached</u> hereto and incorporated herein by reference (the "Property").

Attached as Exhibit B are site maps that show the legal boundary of the Property, any physical features to which the ELUC applies, the horizontal and vertical extent of the contaminants of concern above the applicable remediation objectives for soil, or groundwater, or soil gas both, and the nature, location of the source, and direction of movement of the contaminants of concern, as required under 35 Ill. Adm. Code 742.

Section Two. Property Owner represents and warrants he/she is the current owner of the Property theProperty and has the authority to record this ELUC on the chain of title for the Property with the Office theOffice of the Recorder or Registrar of Titles in \_\_\_\_\_ CountyinCounty, Illinois.

Section Three. The Property Owner hereby agrees, for himself/herself, and his/her heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor or user of the Property or the holder of any portion thereof or interest therein, that [INSERT RESTRICTION (e.g., the groundwater under the Property shall not be used as a potable supply of water, and any contaminated groundwater or soil that is removed, excavated, or disturbed from the Property described in Exhibit A herein must be handled in accordance with all applicable laws and regulations)]. Section Four. This ELUC is binding on the Property Owner, his/her heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor or user of the Property or the holder of any portion thereof or interest therein. This ELUC shall apply in perpetuity against the Property and shall not be released until the IEPA determines there is no longer a need for this ELUC as an institutional control; until the IEPA, upon written request, issues to the site that received the no further remediation determination a new no further remediation determination approving modification or removal of the limitation(s) or requirement(s); the new no further remediation determination is filed on the chain of title of the site subject to the no further remediation determination; and until a release or modification of the land use limitation or requirement is filed on the chain of title for the Property.

Section Five. Information regarding the remediation performed on the Property may be obtained from the IEPA through a request under the Freedom of Information Act  $\{ \_ 5 \text{ ILCS } 140 \} \_$  and rules promulgated thereunder by providing the IEPA with the  $\{ \_ 10 - \text{digit } \text{LPC or identification number} \}$  listed above.

Section Six. The effective date of this ELUC shall be the date that it is officially recorded in the chain of title for the Property to which the ELUC applies.

WITNESS the following signatures:

Property Owner(s)

÷.,

W3 By:-----Its:-\_\_\_\_ Date:-STATE OF ILLINOIS ) ) SS:COUNTY OF ) County and County and State, DO HEREBY CERTIFY, that \_\_\_\_\_\_ and \_\_\_\_\_\_, <u>thatand</u>, personally known to me to be the Property Owner(s) of\_\_\_\_\_ \_\_\_\_\_, and personally, and personally known to me to be the same persons whose names are subscribed to the foregoing instrument, appeared before me this day in person and severally acknowledged that in said capacities they signed and delivered the said instrument as their free and voluntary act for the uses and purposes therein set forth. Given under my hand and official seal, this \_\_\_\_\_ day of 

thisday of, 20.Notary Public

STATE OF \_\_\_\_\_\_ )
STATE OF \_\_\_\_\_\_ )
STATE OF \_\_\_\_\_\_ )
I, \_\_\_\_\_, a notary public, do hereby certify that before me this day in
person appeared \_\_\_\_\_\_, personally known to me to be the
PropertytheProperty Owner(s), of \_\_\_\_\_\_, each severally
acknowledged that they signed and delivered the foregoing instrument as the

Property Owner(s) herein set forth, and as their own free and voluntary act, for the uses and purposes herein set forth.

Given under my hand and official seal this \_\_\_\_\_ day of

<u>, thisday of, 20.</u>Notary Public

PIN NO. XX-XX-XXX-XXX-XXXX

(Parcel Index Number)

Exhibit A

i.

The subject property is located in the City of \_\_\_\_\_, County, State of IllinoisofIllinois, commonly known as \_\_\_\_\_, Illinois and, Illinois and more particularly described as:LIST THE COMMON ADDRESS; LEGAL DESCRIPTION; AND REAL ESTATE TAX INDEX OR PARCEL # (PURSUANT TO SECTION 742. 1010742.1010(D)(2))

#### PIN NO. XX-XX-XXX-XXXX

Exhibit B

IN ACCORDANCE WITH SECTION 742.1010(d) (D) (8)(A) - (D), PROVIDE ALL THE FOLLOWING ELEMENTS. ATTACH SEPARATE SHEETS, LABELED AS EXHIBIT B, WHERE NECESSARY.

(A) A scaled map showing the legal boundary of the property to which the ELUC applies.

(B) Scaled maps showing the horizontal and vertical extent of contaminants of concern above the applicable remediation objectives for soil, and groundwater, and soil gas to which the ELUC applies.

(C) Scaled maps showing the physical features to which an ELUC applies (e.g., engineered barriers, indoor inhalation building control technologies, monitoring wells, caps, etc.).

(D) Scaled maps showing the nature, location of the source, and direction of movement of the contaminants of concern.

(Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

ILLINOIS REGISTER

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

JCAR350742-1207340r01

ILLINOIS REGISTER

 $e^{X} = x$ 

1

I

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

Document comparison done by DeltaView on Friday, May 11, 2012 11:55:05 AM

| Input:        |                                                              |
|---------------|--------------------------------------------------------------|
| Document 1    | file://I:/Input/Agency Rulemakings - Files Received/2012/35- |
|               | 742-Agency(issue20).doc                                      |
| Document 2    | file://I:/Input/Agency Rulemakings - Files Received/2012/35- |
|               | 742-JCAR(R01)(issue20).doc                                   |
| Rendering set | Standard                                                     |

| Legend:           |  |
|-------------------|--|
| Insertion_        |  |
| <b>Deletion</b>   |  |
| Moved from        |  |
| Moved to          |  |
| Style change      |  |
| Format change     |  |
| Moved deletion    |  |
| Inserted cell     |  |
| Deleted cell      |  |
| Moved cell        |  |
| Split/Merged cell |  |
| Padding cell      |  |

-

e . 1

| Statistics:    |       |  |  |  |
|----------------|-------|--|--|--|
|                | Count |  |  |  |
| Insertions     | 691   |  |  |  |
| Deletions      | 905   |  |  |  |
| Moved from     | 3     |  |  |  |
| Moved to       | 3     |  |  |  |
| Style change   | 0     |  |  |  |
| Format changed | 0     |  |  |  |
| Total changes  | 1602  |  |  |  |



| 1         |                           | TITLE 35: ENVIRONMENTAL PROTECTION                                       |
|-----------|---------------------------|--------------------------------------------------------------------------|
| 2         |                           | SUBTITLE G: WASTE DISPOSAL                                               |
| 3         |                           | CHAPTER I: POLLUTION CONTROL BOARD                                       |
| 4         |                           | SUBCHAPTER f: RISK BASED CLEANUP OBJECTIVES                              |
| 5         |                           |                                                                          |
| 6         |                           | PART 742                                                                 |
| 7         |                           | TIERED APPROACH TO CORRECTIVE ACTION OBJECTIVES                          |
| 8         |                           |                                                                          |
| 9         |                           | SUBPART A: INTRODUCTION                                                  |
| 10        |                           |                                                                          |
| 11        | Section                   |                                                                          |
| 12        | 742.100                   | Intent and Purpose                                                       |
| 13        | 742.105                   | Applicability OFFICE                                                     |
| 14        | 742.110                   | Overview of Liered Approach MAY 15 2012                                  |
| 15        | 742.115                   | Key Elements                                                             |
| 10        | 742.120                   | Site Characterization Pollution Contract Pollution                       |
| 17        |                           | SUBDADT B. GENEDAI                                                       |
| 10        |                           | SODIARI D. GENERAL                                                       |
| 20        | Section                   |                                                                          |
| 21        | 742 200                   | Definitions                                                              |
| 22        | 742.205                   | Severability                                                             |
| 23        | 742.210                   | Incorporations by Reference                                              |
| 24        | 742.215                   | Determination of Soil Attenuation Capacity                               |
| 25        | 742.220                   | Determination of Soil Saturation Limit                                   |
| 26        | 742.222                   | Determination of Soil Vapor Saturation Limit                             |
| 27        | 742.225                   | Demonstration of Compliance with Soil and Groundwater Remediation        |
| 28        |                           | Objectives                                                               |
| 29        | <u>742.227</u>            | Demonstration of Compliance with Soil Gas Remediation Objectives for the |
| 30        |                           | Outdoor and Indoor Inhalation Exposure Routes                            |
| 31        | 742.230                   | Agency Review and Approval                                               |
| 32        |                           |                                                                          |
| 33        |                           | SUBPART C: EXPOSURE ROUTE EVALUATIONS                                    |
| 34        | <b>a</b> .•               |                                                                          |
| 35        | Section                   |                                                                          |
| 36        | 742.300                   | Exclusion of Exposure Route                                              |
| 3/        | 742.305                   | Contaminant Source and Free Product Determination                        |
| 38        | 742.310                   | <u>Outdoor</u> Innalation Exposure Route                                 |
| 37<br>40  | <u>142.312</u><br>742 215 | Soil Ingestion Exposure Route                                            |
| 40<br>//1 | 742.313                   | Groundwater Ingestion Exposure Poute                                     |
| 42        | 174.340                   | Groundwater ingestion Exposure Route                                     |
| 43        |                           | SUBPART D: DETERMINING AREA BACKGROUND                                   |

,°

| 44       |                |                                                                                 |
|----------|----------------|---------------------------------------------------------------------------------|
| 45       | Section        |                                                                                 |
| 46       | 742.400        | Area Background                                                                 |
| 47       | 742.405        | Determination of Area Background for Soil                                       |
| 48       | 742.410        | Determination of Area Background for Groundwater                                |
| 49       | 742.415        | Use of Area Background Concentrations                                           |
| 50       |                |                                                                                 |
| 51       |                | SUBPART E: TIER 1 EVALUATION                                                    |
| 52       | <b>a</b>       |                                                                                 |
| 53       | Section        |                                                                                 |
| 54       | 742.500        | Tier 1 Evaluation Overview                                                      |
| 55       | 742.505        | Tier 1 Soil, Soil Gas and Groundwater Remediation Objectives                    |
| 56       | 742.510        | Tier 1 Remediation Objectives Tables for the Ingestion, Outdoor Inhalation, and |
| 57       |                | Soil Component of the Groundwater Ingestion Exposure Routes                     |
| 58       | 742.515        | Tier 1 Remediation Objectives Tables for the Indoor Inhalation Exposure Route   |
| 59       |                |                                                                                 |
| 60       |                | SUBPART F: TIER 2 GENERAL EVALUATION                                            |
| 61       | <b>a</b>       |                                                                                 |
| 62       | Section        |                                                                                 |
| 63       | 742.600        | Ther 2 Evaluation Overview                                                      |
| 64       | 742.605        | Land Use                                                                        |
| 65       | /42.610        | Chemical and Site Properties                                                    |
| 66       |                |                                                                                 |
| 6/       | a              | SUBPART G: TIER 2 SOIL AND SOIL GAS EVALUATION                                  |
| 68       | Section        |                                                                                 |
| 69<br>70 | 742.700        | Tier 2 Soil Evaluation Overview                                                 |
| 70       | 742.705        | Parameters for Soil Remediation Objective Equations                             |
| 71       | 742.710        | SSL Soil Equations                                                              |
| 72       | 742.712        | SSL Soil Gas Equation for the Outdoor Inhalation Exposure Route                 |
| 13       | 742.715        | RBCA Soil Equations                                                             |
| /4<br>76 | <u>742.717</u> | J&E Soll Gas Equations for the Indoor Inhalation Exposure Route                 |
| 75       | 742.720        | Chemicals with Cumulative Noncarcinogenic Effects                               |
| /6       |                |                                                                                 |
| 77       |                | SUBPART H: TIER 2 GROUNDWATER EVALUATION                                        |
| /8       | a .:           |                                                                                 |
| /9       | Section        |                                                                                 |
| 80       | 742.800        | Tier 2 Groundwater Evaluation Overview                                          |
| 81       | 742.805        | Deca C la latina de Dalitation Objectives                                       |
| 82<br>82 | /42.810        | KBCA Calculations to Predict Impacts from Remaining Groundwater                 |
| 83<br>04 | 740.010        | Contamination                                                                   |
| 04<br>85 | <u>/42.812</u> | Jær Groundwater Equations for the Indoor Inhalation Exposure Route              |
| 85<br>86 |                | SUBPART I: TIER 3 EVALUATION                                                    |
|          |                |                                                                                 |

| 87         |                 |                                                                        |                                                                  |  |  |  |  |  |
|------------|-----------------|------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| 88         | Section         |                                                                        |                                                                  |  |  |  |  |  |
| 89         | 742.900         | Tier 3 Evaluation Overview                                             |                                                                  |  |  |  |  |  |
| 90         | 742.905         | Modifications of Pa                                                    | Modifications of Parameters                                      |  |  |  |  |  |
| 91         | 742.910         | Alternative Models                                                     |                                                                  |  |  |  |  |  |
| 92         | 742.915         | Formal Risk Assess                                                     | ments                                                            |  |  |  |  |  |
| 93         | 742.920         | Impractical Remedia                                                    | ation                                                            |  |  |  |  |  |
| 94         | 742.925         | Exposure Routes                                                        |                                                                  |  |  |  |  |  |
| 95         | 742.930         | Derivation of Toxic                                                    | ological Data                                                    |  |  |  |  |  |
| 96         | 742.935         | Indoor Inhalation Ex                                                   | xposure Route                                                    |  |  |  |  |  |
| 97         |                 |                                                                        |                                                                  |  |  |  |  |  |
| 98         |                 | SUBPAR                                                                 | Γ J: INSTITUTIONAL CONTROLS                                      |  |  |  |  |  |
| 99         |                 |                                                                        |                                                                  |  |  |  |  |  |
| 100        | Section         |                                                                        |                                                                  |  |  |  |  |  |
| 101        | 742.1000        | Institutional Control                                                  | ls                                                               |  |  |  |  |  |
| 102        | 742.1005        | No Further Remedia                                                     | ation Letters                                                    |  |  |  |  |  |
| 103        | 742.1010        | Environmental Land                                                     | l Use Controls                                                   |  |  |  |  |  |
| 104        | 742.1012        | Federally Owned Pr                                                     | operty: Land Use Control Memoranda of Agreement                  |  |  |  |  |  |
| 105        | 742.1015        | Ordinances                                                             |                                                                  |  |  |  |  |  |
| 106        | 742.1020        | Highway Authority Agreements and Highway Authority Agreement Memoranda |                                                                  |  |  |  |  |  |
| 107        |                 | of Agreement                                                           |                                                                  |  |  |  |  |  |
| 108        |                 |                                                                        |                                                                  |  |  |  |  |  |
| 109        |                 | SUBPAI                                                                 | RT K: ENGINEERED BARRIERS                                        |  |  |  |  |  |
| 110        |                 |                                                                        |                                                                  |  |  |  |  |  |
| 111        | Section         |                                                                        |                                                                  |  |  |  |  |  |
| 112        | 742.1100        | Engineered Barriers                                                    |                                                                  |  |  |  |  |  |
| 113        | 742.1105        | 2.1105 Engineered Barrier Requirements                                 |                                                                  |  |  |  |  |  |
| 114        |                 |                                                                        |                                                                  |  |  |  |  |  |
| 115        |                 | <u>SUBPART L:</u> I                                                    | BUILDING CONTROL TECHNOLOGIES                                    |  |  |  |  |  |
| 116        |                 |                                                                        |                                                                  |  |  |  |  |  |
| 117        | <u>Section</u>  |                                                                        |                                                                  |  |  |  |  |  |
| 118        | <u>742.1200</u> | Building Control Te                                                    | chnologies                                                       |  |  |  |  |  |
| 119        | <u>742.1205</u> | Building Control Te                                                    | chnology Proposals                                               |  |  |  |  |  |
| 120        | <u>742.1210</u> | Building Control Te                                                    | chnology Requirements                                            |  |  |  |  |  |
| 121        |                 |                                                                        |                                                                  |  |  |  |  |  |
| 122        | 742.APPEN       | DIX A General                                                          |                                                                  |  |  |  |  |  |
| 123        | 742.            | ILLUSTRATION A                                                         | Developing Soil Remediation Objectives Under the Tiered          |  |  |  |  |  |
| 124        | 740             |                                                                        | Approach                                                         |  |  |  |  |  |
| 125        | /42.            | ILLUSTRATION B                                                         | Developing Groundwater Remediation Objectives Under              |  |  |  |  |  |
| 120        | 740             |                                                                        | the Hered Approach                                               |  |  |  |  |  |
| 12/        | /42.            | IADLE A                                                                | Soli Saturation Limits ( $C_{sat}$ ) for Chemicals whose Melting |  |  |  |  |  |
| 12ð<br>120 | 710             |                                                                        | Toloronoo Easter (V)                                             |  |  |  |  |  |
| 129        | /42.1ABLE B     |                                                                        | TOTETATICE FACTOR (N)                                            |  |  |  |  |  |

а. Э

| 130 | 742.TABLE C                       | Coefficients $\{A_{N-I+1}\}$ for W Test of Normality, for                           |
|-----|-----------------------------------|-------------------------------------------------------------------------------------|
| 122 |                                   | N=2(1)50<br>Percentage Doints of the W/Test for $n=2(1)50$                          |
| 132 | 742.1 ADLE D                      | Similar Asting Nancaraina gamia Chamicala                                           |
| 133 | 742.1 ADLE E<br>742 TADLE E       | Similar Acting Consideration Service Chemicals                                      |
| 134 | 742.1 ABLE F                      | Similar-Acting Carcinogenic Chemicals                                               |
| 135 | 742.TABLE G                       | Concentrations of Inorganic Chemicals in Background                                 |
| 136 |                                   | Soils                                                                               |
| 137 | 742.TABLE H                       | Concentrations of Polynuclear Aromatic Hydrocarbon<br>Chemicals in Background Soils |
| 139 | 742.TABLE I                       | Chemicals Whose Tier 1 Class I Groundwater Remediation                              |
| 140 |                                   | Objective Exceeds the 1 in 1.000.000 Cancer Risk                                    |
| 141 |                                   | Concentration                                                                       |
| 142 | TABLE I                           | List of TACO Volatile Chemicals for the Indoor Inhalation                           |
| 143 | <u></u>                           | Exposure Route                                                                      |
| 144 | ΤΑΒΙ Ε Κ                          | Soil Vanor Saturation Limits (C <sup>sat</sup> ) for Volatile Chemicals             |
| 145 | INDED IX                          | Sold vapor Saturation Ellints ( $C_{v}$ ) for volatile chemicals                    |
| 146 | 742 APPENDIX B Tier 1 Illustra    | ations and Tables                                                                   |
| 147 | 742.ILLUSTRATION A                | Tier 1 Evaluation                                                                   |
| 148 | 742 TABLE A                       | Tier 1 Soil Remediation Objectives for Residential                                  |
| 149 |                                   | Properties                                                                          |
| 150 | 742 TABLE B                       | Tier 1 Soil Remediation Objectives for                                              |
| 151 |                                   | Industrial/Commercial Properties                                                    |
| 152 | 742 TABLE C                       | pH Specific Soil Remediation Objectives for Inorganics and                          |
| 153 |                                   | Ionizing Organics for the Soil Component of the                                     |
| 154 |                                   | Groundwater Ingestion Route (Class I Groundwater)                                   |
| 155 | 742 TABLE D                       | nH Specific Soil Remediation Objectives for Inorganics and                          |
| 156 |                                   | Ionizing Organics for the Soil Component of the                                     |
| 157 |                                   | Groundwater Ingestion Route (Class II Groundwater)                                  |
| 158 | 742 ΤΔΒΙΕΕ                        | Tier 1 Groundwater Remediation Objectives for the                                   |
| 150 | / <del>1</del> 2.17 (DEC E        | Groundwater Component of the Groundwater Ingestion                                  |
| 160 |                                   | Route                                                                               |
| 161 | 742 TABLE F                       | Values Used to Calculate the Tier 1 Soil Remediation                                |
| 162 | / <del>1</del> 2.1ADEL 1          | Objectives for the Soil Component of the Groundwater                                |
| 162 |                                   | Ingestion Poute                                                                     |
| 164 | TARIEG                            | Soil Gas Remediation Objectives for the Outdoor Inholation                          |
| 165 | <u>TADLE O</u>                    | Exposure Route                                                                      |
| 166 | ΤΑΡΙΕΗ                            | Tier 1 Soil Gos and Groundwater Remadiation Objectives                              |
| 167 | <u>IADLE II</u>                   | for the Indoor Inholation Exposure Poute Diffusion and                              |
| 169 |                                   | Advaction                                                                           |
| 160 | ΤΑΡΙΕΙ                            | <u>Advection</u><br>Tion 1 Soil Gos and Crowndwater Demodiation Objectives          |
| 107 | <u>IADLE I</u>                    | for the Indeer Inhelation Expressive Deute Diffusion Of                             |
| 171 | 742 ADDENIDIV C Tion 2 Illocation | <u>101 me mador mnalation Exposure Route – Diffusion Only</u>                       |
| 170 | 742.AFTENDIA U HET A TIONA        | Tion 2 Evolution for Stall                                                          |
| 172 | 742.1LLUSTKATION A                | Ther 2 Evaluation for Soll                                                          |

ı f

| 173 | 742.ILLUSTRATION B                    | Tier 2 Evaluation for Groundwater                                                              |
|-----|---------------------------------------|------------------------------------------------------------------------------------------------|
| 174 | 742.ILLUSTRATION C                    | US Department of Agriculture Soil Texture Classification                                       |
| 175 | 742.TABLE A                           | SSL Equations                                                                                  |
| 176 | 742.TABLE B                           | SSL Parameters                                                                                 |
| 177 | 742.TABLE C                           | RBCA Equations                                                                                 |
| 178 | 742.TABLE D                           | RBCA Parameters                                                                                |
| 179 | 742.TABLE E                           | Default Physical and Chemical Parameters                                                       |
| 180 | 742.TABLE F                           | Methods for Determining Physical Soil Parameters                                               |
| 181 | 742.TABLE G                           | Error Function (erf)                                                                           |
| 182 | 742.TABLE H                           | Q/C Values by Source Area                                                                      |
| 183 | 742.TABLE I                           | K <sub>oc</sub> Values for Ionizing Organics as a Function of pH                               |
| 184 |                                       | $(\text{cm}^3/\text{g or } \text{L/kg or } \text{cm}^3_{\text{water}}/\text{g}_{\text{soil}})$ |
| 185 | 742.TABLE J                           | Values to be Substituted for $k_d$ or $k_s$ when Evaluating                                    |
| 186 |                                       | Inorganics as a Function of pH ( $cm^3/g$ or L/kg or $cm^3_{water}/g$                          |
| 187 |                                       | g <sub>soil</sub> )                                                                            |
| 188 | 742.TABLE K                           | Parameter Estimates for Calculating Water-Filled Soil                                          |
| 189 |                                       | Porosity $(\Theta_W)$                                                                          |
| 190 | 742.TABLE L                           | J&E Equations                                                                                  |
| 191 | 742.TABLE M                           | J&E Parameters                                                                                 |
| 192 | 742.APPENDIX D                        | Highway Authority Agreement                                                                    |
| 193 | 742.APPENDIX E                        | Highway Authority Agreement Memorandum of                                                      |
| 194 |                                       | Agreement                                                                                      |
| 195 | 742.APPENDIX F                        | Environmental Land Use Control                                                                 |
| 196 | 742.APPENDIX G                        | Model Ordinance                                                                                |
| 197 | 742.APPENDIX H                        | Memorandum of Understanding                                                                    |
| 198 |                                       | 6                                                                                              |
| 199 | AUTHORITY: Implementing Sec           | tions 22.4, 22.12, Title XVI, and Title XVII and authorized by                                 |
| 200 | Sections 27 and 58.5 of the Environ   | nmental Protection Act [415 ILCS 5/22.4, 22.12, 27, and 58.5]                                  |
| 201 | and Title XVI and Title XVII].        |                                                                                                |
| 202 | L                                     |                                                                                                |
| 203 | SOURCE: Adopted in R97-12(A)          | at 21 Ill. Reg. 7942, effective July 1, 1997; amended in R97-                                  |
| 204 | 12(B) at 21 Ill. Reg. 16391, effectiv | ve December 8, 1997; amended in R97-12(C) at 22 Ill. Reg.                                      |
| 205 | 10847, effective June 8, 1998; ame    | nded in R00-19(A) at 25 Ill. Reg. 651, effective January 6,                                    |
| 206 | 2001; amended in R00-19(B) at 25      | Ill. Reg. 10374, effective August 15, 2001; amended in R00-                                    |
| 207 | 19(C) at 26 Ill. Reg. 2683, effective | e February 5, 2002; amended in R06-10 at 31 Ill. Reg. 4063,                                    |
| 208 | effective February 23, 2007; amend    | led in R06-10 at 36 Ill. Reg., effective                                                       |
| 209 | <b>,</b> , , ,                        | <u> </u>                                                                                       |
| 210 | SU                                    | BPART A: INTRODUCTION                                                                          |
| 211 |                                       |                                                                                                |
| 212 | Section 742.105 Applicability         |                                                                                                |
| 213 |                                       |                                                                                                |
| 214 | a) Any person, including              | ng a person required to perform an investigation pursuant to                                   |
| 215 | the Illinois Environ                  | nental Protection Act [415 ILCS 5] (Act), may elect to                                         |
|     |                                       |                                                                                                |

| 216<br>217<br>218<br>219<br>220<br>221 |    | proceed under this Part to the extent allowed by State or federal law and<br>regulations and the provisions of this Part and subject to the exceptions listed in<br>subsection (h) below. A person proceeding under this Part may do so to the<br>extent such actions are consistent with the requirements of the program under<br>which site remediation is being addressed. |  |  |  |  |
|----------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 222<br>222<br>223                      | b) | This Part is to be used in conjunction with the procedures and requirements applicable to the following programs:                                                                                                                                                                                                                                                             |  |  |  |  |
| 224<br>225<br>226<br>227               |    | 1) Leaking Underground Storage Tanks (35 Ill. Adm. Code 731, 732, and 734);                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 227<br>228<br>229                      |    | 2) Site Remediation Program (35 Ill. Adm. Code 740); and                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 230<br>231                             |    | 3) RCRA Part B Permits and Closure Plans (35 Ill. Adm. Code 724 and 725).                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 232<br>233<br>234<br>235<br>236        | c) | The procedures in this Part may not be used if their use would delay response<br>action to address imminent and substantial threats to human health and the<br>environment. This Part may only be used after actions to address such threats<br>have been completed.                                                                                                          |  |  |  |  |
| 237<br>238<br>239<br>240               | d) | This Part may be used to develop remediation objectives to protect surface waters, sediments or ecological concerns, when consistent with the regulations of other programs, and as approved by the Agency.                                                                                                                                                                   |  |  |  |  |
| 241<br>242<br>243<br>244<br>245        | e) | A no further remediation determination issued by the Agency prior to July 1, 1997 pursuant to Section $4(y)$ of the Act or one of the programs listed in subsection (b) of this Section that approves completion of remedial action relative to a release shall remain in effect in accordance with the terms of that determination.                                          |  |  |  |  |
| 246<br>247<br>248<br>249<br>250<br>251 | f) | Site specific groundwater remediation objectives determined under this Part for contaminants of concern may exceed the groundwater quality standards established pursuant to the rules promulgated under the Illinois Groundwater Protection Act [415 ILCS 55] as long as done in accordance with Sections 742.805 and 742.900(c)(9). (See 415 ILCS 5/58.5(d)(4)              |  |  |  |  |
| 251<br>252<br>253<br>254<br>255        | g) | Where contaminants of concern include polychlorinated byphenyls (PCBs), a person may need to evaluate the applicability of regulations adopted under the Toxic Substances Control Act (15 <u>USCU.S.C.</u> 2601).                                                                                                                                                             |  |  |  |  |
| 256<br>257<br>258                      | h) | This Part may not be used in lieu of the procedures and requirements applicable to landfills under 35 Ill. Adm. Code 807 or 811 through 814.                                                                                                                                                                                                                                  |  |  |  |  |

259 i) An evaluation of the indoor inhalation exposure route under this Part addresses the potential of contaminants present in soil gas or groundwater to reach human 260 receptors within buildings. This Part does not address the remediation or 261 262 mitigation of any contamination within a building from a source other than soil gas or groundwater, such as the building structure itself and products within the 263 264 building. 265 (Source: Amended at 36 Ill. Reg., effective ) 266 267 268 Section 742.110 Overview of Tiered Approach 269 270 a) This Part presents an approach for developing remediation objectives (see Appendix A, Illustrations A and B) that include an option for exclusion of 271 272 pathways from further consideration, use of area background concentrations as remediation objectives and three tiers for selecting applicable remediation 273 274 objectives. An understanding of human exposure routes is necessary to properly conduct an evaluation under this approach. In some cases, applicable human 275 276 exposure routesroute(s) can be excluded from further consideration prior to any 277 tier evaluation. Selecting which tier or combination of tiers to be used to develop 278 remediation objectives is dependent on the site-specific conditions and 279 remediation goals. Tier 1 evaluations and Tier 2 evaluations are not prerequisites to conducting Tier 3 evaluations. 280 281 282 b) A Tier 1 evaluation compares the concentration of contaminants detected at a site 283 to the corresponding remediation objectives for residential and industrial/ 284 commercial properties contained in Appendix B, Tables A, B, C, D-and E, G, H 285 and I. To complete a Tier 1 evaluation, the extent and concentrations of the contaminants of concern, the groundwater class, the land use classification. 286 human exposure routes at the site, and, if appropriate, soil pH, must be known. If 287 288 remediation objectives are developed based on industrial/commercial property use, then institutional controls under Subpart J are required. 289 290 291 A Tier 2 evaluation uses the risk based equations from the Soil Screening Level c) 292 (SSL) model and Risk Based Corrective Action (RBCA) model and modified Johnson and Ettinger (J&E) model) documents listed in Appendix C, Tables A, 293 294 and C and L, respectively. In addition to the information that is required for a 295 Tier 1 evaluation, site-specific information is used to calculate Tier 2 remediation objectives. As in Tier 1, Tier 2 evaluates residential and industrial/commercial 296 properties only. If remediation objectives are developed based on 297 298 industrial/commercial property use, then institutional controls under Subpart J are 299 required. 300 301 d) A Tier 3 evaluation allows alternative parameters and factors, not available under

| 302<br>303 |              | a Tier<br>objecti | 1 or Tie<br>ves. R      | er 2 evaluation, to be considered when developing remediation<br>emediation objectives developed for conservation and agricultural |
|------------|--------------|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 304        |              | proper            | ties car                | n only be developed under Tier 3.                                                                                                  |
| 305        |              |                   |                         |                                                                                                                                    |
| 306        | e)           | Remed             | liation                 | objectives may be developed using area background concentrations                                                                   |
| 307        |              | or any            | of the 1                | three tiers if the evaluation is conducted in accordance with                                                                      |
| 308        |              | applica           | able req                | uirements in Subparts D through I. When contaminant                                                                                |
| 309        |              | concer            | tration                 | s do not exceed remediation objectives developed under one of the                                                                  |
| 310        |              | tiers or          | area b                  | ackground procedures under Subpart D, further evaluation under                                                                     |
| 311        |              | any of            | the oth                 | er tiers is not required.                                                                                                          |
| 312        |              |                   |                         |                                                                                                                                    |
| 313        | (Sour        | rce: Ame          | ended a                 | t 36 Ill. Reg, effective)                                                                                                          |
| 314        | ~            |                   |                         |                                                                                                                                    |
| 315        | Section 742. | 115 Key           | Elemo                   | ents                                                                                                                               |
| 316        | <b>T</b> 1 1 | 1                 |                         |                                                                                                                                    |
| 317        | To develop r | emediatio         | on obje                 | ectives under this Part, the following key elements shall be                                                                       |
| 318        | addressed.   |                   |                         |                                                                                                                                    |
| 319        | - )          | <b>D</b>          |                         |                                                                                                                                    |
| 320        | a)           | Exposi            | ire Rot                 | nes                                                                                                                                |
| 321        |              | 1)                | Thia D                  | Port identifies the following as notartial announce routes to be                                                                   |
| 322        |              | 1)                | 1111S F                 | art identifies the following as potential exposure foules to be                                                                    |
| 323        |              |                   | adures                  | sseu.                                                                                                                              |
| 325        |              |                   | ۵)                      | Outdoor inhalationInhalation.                                                                                                      |
| 326        |              |                   | 11)                     | <u>Outdoor milatation</u> milatation,                                                                                              |
| 327        |              |                   | B)                      | Indoor inhalation:                                                                                                                 |
| 328        |              |                   |                         | <u>moor minimuton.</u>                                                                                                             |
| 329        |              |                   | C) <del>B)</del>        | Soil ingestion:                                                                                                                    |
| 330        |              |                   | <u> </u>                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                            |
| 331        |              |                   | D) <del>C)</del>        | Groundwater ingestion: and                                                                                                         |
| 332        |              |                   | /                       |                                                                                                                                    |
| 333        |              |                   | <u>E)</u> <del>D)</del> | Dermal contact with soil.                                                                                                          |
| 334        |              |                   | ,                       |                                                                                                                                    |
| 335        |              | 2)                | The ev                  | valuation of exposure routes under subsections $(a)(1)(A)$ , $(a)(1)(B)$ ,                                                         |
| 336        |              |                   | and-(a)                 | (1)(C) and $(a)(1)(D)$ of this Section is required for all sites when                                                              |
| 337        |              |                   | develo                  | pping remediation objectives or excluding exposure pathways.                                                                       |
| 338        |              |                   | Evalua                  | ation of the dermal contact exposure route is required for use of                                                                  |
| 339        |              |                   | RBCA                    | a equations in Appendix C, Table C or use of formal risk assessment                                                                |
| 340        |              |                   | under                   | Section 742.915.                                                                                                                   |
| 341        |              |                   |                         |                                                                                                                                    |
| 342        |              | 3)                | The gr                  | oundwater ingestion exposure route is comprised of two                                                                             |
| 343        |              |                   | compo                   | onents:                                                                                                                            |
| 344        |              |                   |                         |                                                                                                                                    |

| 345        |    |           | A)              | Migration from soil to groundwater (soil component); and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|----|-----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 340<br>347 |    |           | B)              | Direct ingestion of groundwater (groundwater component)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 348        |    |           | D)              | Direct ingestion of groundwater (groundwater component).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 349        |    | <u>4)</u> | The             | outdoor inhalation route is comprised of two components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 350        |    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 351        |    |           | <u>A)</u>       | <u>Migration from soil through soil gas to outdoor air (soil</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 352        |    |           |                 | <u>component); and</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 353        |    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 354        |    |           | <u>B)</u>       | <u>Migration from soil gas to outdoor air (soil gas component).</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 333        |    | 5)        |                 | inde an interfaction and a second second size of a fitter second s |
| 336        |    | <u>5)</u> | Ine             | indoor inhalation exposure route is comprised of two components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 259<br>259 |    |           | <b>A</b> )      | Migration from goil gas to indeer oir (goil gas component); and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 350        |    |           | $\underline{A}$ | implation from son gas to indoor an (son gas component), and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 360        |    |           | B)              | Migration from groundwater through soil gas to indoor air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 361        |    |           | <u>D</u> )      | (groundwater component)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 362        |    |           |                 | (Stourid water component).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 363        | b) | Cont      | aminan          | ts of Concern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 364        | -) |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 365        |    | The o     | contam          | inants of concern to be remediated depend on the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 366        |    |           |                 | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 367        |    | 1)        | The             | materials and wastes managed at the site;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 368        |    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 369        |    | 2)        | The             | extent of the no further remediation determination being requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 370        |    |           | from            | the Agency pursuant to a specific program; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 371        |    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 372        |    | 3)        | The             | requirements applicable to the specific program, as listed at Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 373        |    |           | 742.            | 105(b) under which the remediation is being performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 374        |    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 375        | c) | Land      | Use             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 376        |    | The j     | present         | and post-remediation uses of the site where exposures may occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 377        |    | shall     | be eval         | luated. The land use of a site, or portion thereof, shall be classified as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 378        |    | one       | of the fo       | ollowing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 379        |    | 1)        | ъ ·             | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 380        |    | 1)        | Resi            | dential property;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 381        |    | 2)        | C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 382        |    | 2)        | Cons            | servation property;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 283<br>294 |    | 2)        | 1 ani           | aultural proportiry or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 204<br>285 |    | 5)        | Agri            | cultural property, of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 286<br>286 |    | 4)        | Indu            | strial/commercial property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 387        |    | 4)        | mau             | surar commercial property.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 201        |    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 388 | <u>d)</u>      | Environmental Media of Concern                                                         |
|-----|----------------|----------------------------------------------------------------------------------------|
| 389 |                | This Part provides procedures for developing remediation objectives for the            |
| 390 |                | following environmental media:                                                         |
| 391 |                |                                                                                        |
| 392 |                | 1) Soil;                                                                               |
| 393 |                |                                                                                        |
| 394 |                | 2) Soil gas;                                                                           |
| 395 |                |                                                                                        |
| 396 |                | 3) Groundwater.                                                                        |
| 397 |                |                                                                                        |
| 398 | (Sourc         | e: Amended at 36 Ill. Reg., effective                                                  |
| 399 | × ×            | <b>ö</b>                                                                               |
| 400 |                | SUBPART B: GENERAL                                                                     |
| 401 |                |                                                                                        |
| 402 | Section 742.2  | 00 Definitions                                                                         |
| 403 |                |                                                                                        |
| 404 | Except as stat | ed in this Section, or unless a different meaning of a word or term is clear from the  |
| 405 | context, the d | efinition of words or terms in this Part shall be the same as that applied to the same |
| 406 | words or term  | is in the Act.                                                                         |
| 407 |                |                                                                                        |
| 408 |                | "Act" means the Illinois Environmental Protection Act [415 ILCS 5].                    |
| 409 |                |                                                                                        |
| 410 |                | "ADL" means Acceptable Detection Limit, which is the detectable concentration          |
| 411 |                | of a substance that is equal to the lowest appropriate Practical Quantitation Limit    |
| 412 |                | (POL) as defined in this Section.                                                      |
| 413 |                |                                                                                        |
| 414 |                | "Agency" means the Illinois Environmental Protection Agency.                           |
| 415 |                |                                                                                        |
| 416 |                | "Agricultural Property" means any real property for which its present or post-         |
| 417 |                | remediation use is for growing agricultural crops for food or feed either as           |
| 418 |                | harvested crops, cover crops or as pasture. This definition includes, but is not       |
| 419 |                | limited to, properties used for confinement or grazing of livestock or poultry and     |
| 420 |                | for silviculture operations. Excluded from this definition are farm residences.        |
| 421 |                | farm outbuildings and agrichemical facilities.                                         |
| 422 |                |                                                                                        |
| 423 |                | "Aquifer" means saturated (with groundwater) soils and geologic materials which        |
| 424 |                | are sufficiently permeable to readily yield economically useful quantities of water    |
| 425 |                | to wells, springs, or streams under ordinary hydraulic gradients. (Illinois            |
| 426 |                | Groundwater Protection Act [415 ILCS 55/3(a)])                                         |
| 427 |                |                                                                                        |
| 428 |                | "Area Background" means concentrations of regulated substances that are                |
| 429 |                | consistently present in the environment in the vicinity of a site that are the result  |
| 430 |                | of natural conditions or human activities, and not the result solely of releases at    |

t

| 431 | the site. [415 ILCS 5/58.2]                                                          |
|-----|--------------------------------------------------------------------------------------|
| 432 |                                                                                      |
| 433 | "ASTM" means the American Society for Testing and Materials.                         |
| 434 |                                                                                      |
| 435 | "Board" means the Illinois Pollution Control Board.                                  |
| 436 |                                                                                      |
| 437 | "Building" means a man-made structure with an enclosing roof and enclosing           |
| 438 | walls, except for windows and doors, that is fit for any human occupancy for at      |
| 439 | least six consecutive months.                                                        |
| 440 |                                                                                      |
| 441 | "Building Control Technology" means any technology or barrier that affects air       |
| 442 | flow or air pressure within a building for purposes of reducing contaminant          |
| 443 | migration to the indoor air.                                                         |
| 444 |                                                                                      |
| 445 | "Cancer Risk" means a unitless probability of an individual developing cancer        |
| 446 | from a defined exposure rate and frequency.                                          |
| 447 |                                                                                      |
| 448 | "Cap" means a barrier designed to prevent the infiltration of precipitation or other |
| 449 | surface water, or impede the ingestion or inhalation of contaminants.                |
| 450 |                                                                                      |
| 451 | "Capillary Fringe" means the zone above the water table in which water is held by    |
| 452 | surface tension. Water in the capillary fringe is under a pressure less than         |
| 453 | atmospheric.                                                                         |
| 454 |                                                                                      |
| 455 | "Carcinogen" means a contaminant that is classified as a category A1 or A2           |
| 456 | carcinogen by the American Conference of Governmental Industrial Hygienists; a       |
| 457 | category 1 or 2A/2B carcinogen by the World Health Organization's International      |
| 458 | Agency for Research on Cancer; a "human carcinogen" or "anticipated human            |
| 459 | carcinogen" by the United States Department of Health and Human Service              |
| 460 | National Toxicological Program; or a category A or B1/B2 carcinogen or as            |
| 461 | "carcinogenic to humans" or "likely to be carcinogenic to humans" by the United      |
| 462 | States Environmental Protection Agency in the integrated risk information system     |
| 463 | or a final rule issued in a Federal Register notice by the USEPA. [415 ILCS          |
| 464 | 5/58.2]                                                                              |
| 465 |                                                                                      |
| 466 | "Class I Groundwater" means groundwater that meets the Class I: Potable              |
| 467 | Resource Groundwater criteria set forth in 35 Ill. Adm. Code 620.                    |
| 468 |                                                                                      |
| 469 | "Class II Groundwater" means groundwater that meets the Class II: General            |
| 470 | Resource Groundwater criteria set forth in 35 Ill. Adm. Code 620.                    |
| 471 |                                                                                      |
| 472 | "Conservation Property" means any real property for which present or post-           |
| 473 | remediation use is primarily for wildlife habitat.                                   |

i -

| 474 |                                                                                     |
|-----|-------------------------------------------------------------------------------------|
| 475 | "Construction Worker" means a person engaged on a temporary basis to perform        |
| 476 | work involving invasive construction activities including, but not limited to,      |
| 477 | personnel performing demolition, earth-moving, building, and routine and            |
| 478 | emergency utility installation or repair activities.                                |
| 479 |                                                                                     |
| 480 | "Contaminant of Concern" or "Regulated Substance of Concern" means any              |
| 481 | contaminant that is expected to be present at the site based upon past and current  |
| 482 | land uses and associated releases that are known to the person conducting a         |
| 483 | remediation based upon reasonable inquiry. [415 ILCS 5/58.2]                        |
| 484 |                                                                                     |
| 485 | "County Highway" means county highway as defined in the Illinois Highway            |
| 486 | Code [605 ILCS 5].                                                                  |
| 487 |                                                                                     |
| 488 | "District Road" means district road as defined in the Illinois Highway Code [605    |
| 489 | ILCS 51.                                                                            |
| 490 | - 1                                                                                 |
| 491 | "Engineered Barrier" means a barrier designed or verified using engineering         |
| 492 | practices that limits exposure to or controls migration of the contaminants of      |
| 493 | concern.                                                                            |
| 494 |                                                                                     |
| 495 | "Environmental Land Use Control" means an instrument that meets the                 |
| 496 | requirements of this Part and is placed in the chain of title to real property that |
| 497 | limits or places requirements upon the use of the property for the purpose of       |
| 498 | protecting human health or the environment, is binding upon the property owner.     |
| 499 | heirs, successors, assigns, and lessees, and runs in perpetuity or until the Agency |
| 500 | approves, in writing, removal of the limitation or requirement from the chain of    |
| 501 | title.                                                                              |
| 502 |                                                                                     |
| 503 | "Exposure Route" means the transport mechanism by which a contaminant of            |
| 504 | concern reaches a receptor.                                                         |
| 505 |                                                                                     |
| 506 | "Federally Owned Property" means real property owned in fee by the United           |
| 507 | States of America on which institutional controls are sought to be placed in        |
| 508 | accordance with this Subpart.                                                       |
| 509 | 1                                                                                   |
| 510 | "Federal Landholding Entity" means that federal department, agency, or              |
| 511 | instrumentality with the authority to occupy and control the day-to-day use.        |
| 512 | operation and management of Federally Owned Property.                               |
| 513 |                                                                                     |
| 514 | "Free Product" means a contaminant that is present as a non-aqueous phase liquid    |
| 515 | for chemicals whose melting point is less than 30°C (e.g., liquid not dissolved in  |
| 516 | water).                                                                             |
| 516 | water).                                                                             |

| 517 |                                                                                      |
|-----|--------------------------------------------------------------------------------------|
| 518 | "GIS" means Geographic Information System.                                           |
| 519 |                                                                                      |
| 520 | "GPS" means Global Positioning System.                                               |
| 521 |                                                                                      |
| 522 | "Groundwater" means underground water which occurs within the saturated zone         |
| 523 | and geologic materials where the fluid pressure in the pore space is equal to or     |
| 524 | greater than atmospheric pressure. [415 ILCS 5/3.64]                                 |
| 525 |                                                                                      |
| 526 | "Groundwater Quality Standards" means the standards for groundwater as set           |
| 527 | forth in 35 Ill. Adm. Code 620.                                                      |
| 528 |                                                                                      |
| 529 | "Hazard Quotient" means the ratio of a single substance exposure level during a      |
| 530 | specified time period to a reference dose for that substance derived from a similar  |
| 531 | exposure period.                                                                     |
| 532 |                                                                                      |
| 533 | "Highway" means any public way for vehicular travel which has been laid out in       |
| 534 | pursuance of any law of this State, or of the Territory of Illinois, or which has    |
| 535 | been established by dedication, or used by the public as a highway for 15 years,     |
| 536 | or which has been or may be laid out and connect a subdivision or platted land       |
| 537 | with a public highway and which has been dedicated for the use of the owners of      |
| 538 | the land included in the subdivision or platted land where there has been an         |
| 539 | acceptance and use under such dedication by such owners, and which has not           |
| 540 | been vacated in pursuance of law. The term "highway" includes rights of way,         |
| 541 | bridges, drainage structures, signs, guard rails, protective structures and all      |
| 542 | other structures and appurtenances necessary or convenient for vehicular traffic.    |
| 543 | A highway in a rural area may be called a "road", while a highway in a               |
| 544 | municipal area may be called a "street". (Illinois Highway Code [605 ILCS 5/2-       |
| 545 | 202])                                                                                |
| 546 |                                                                                      |
| 547 | "Highway Authority" means the Department of Transportation with respect to a         |
| 548 | State highway; the Illinois State Toll Highway with respect to a toll highway; the   |
| 549 | County Board with respect to a county highway or a county unit district road if a    |
| 550 | discretionary function is involved and the County Superintendent of Highways if a    |
| 551 | ministerial function is involved; the Highway Commissioner with respect to a         |
| 552 | township or district road not in a county unit road district; or the corporate       |
| 553 | authorities of a municipality with respect to a municipal street. (Illinois Highway  |
| 554 | Code [605 ILCS 5/2-213])                                                             |
| 555 |                                                                                      |
| 556 | "Human Exposure Pathway" means a physical condition which may allow for a            |
| 557 | risk to human health based on the presence of all of the following: contaminants     |
| 558 | of concern; an exposure route; and a receptor activity at the point of exposure that |
| 559 | could result in contaminant of concern intake.                                       |

| 560 |                                                                                      |
|-----|--------------------------------------------------------------------------------------|
| 561 | "Industrial/Commercial Property" means any real property that does not meet the      |
| 562 | definition of residential property, conservation property or agricultural property.  |
| 563 |                                                                                      |
| 564 | "Infiltration" means the amount of water entering into the ground as a result of     |
| 565 | precipitation.                                                                       |
| 566 |                                                                                      |
| 567 | "Institutional Control" means a legal mechanism for imposing a restriction on        |
| 568 | land use, as described in Subpart J.                                                 |
| 569 | -                                                                                    |
| 570 | "Land Use Control Memoranda of Agreement" mean agreements entered into               |
| 571 | between one or more agencies of the United States and the Illinois Environmental     |
| 572 | Protection Agency that limit or place requirements upon the use of Federally         |
| 573 | Owned Property for the purpose of protecting human health or the environment.        |
| 574 |                                                                                      |
| 575 | "Man-Made Pathways" means constructed physical conditions that may allow for         |
| 576 | the transport of regulated substances including, but not limited to, sewers, utility |
| 577 | lines, utility or elevator vaults, building foundations, basements, crawl spaces,    |
| 578 | drainage ditches, or previously excavated and filled areas or sumps. [415 ILCS       |
| 579 | 5/58.2]                                                                              |
| 580 |                                                                                      |
| 581 | "Natural Pathways" means <i>natural</i> physical conditions that may allow for the   |
| 582 | transport of regulated substances including, but not limited to, soil, groundwater,  |
| 583 | sand seams and lenses, and gravel seams and lenses. [415 ILCS 5/58.2]                |
| 584 |                                                                                      |
| 585 | "Person" means an individual, trust, firm, joint stock company, joint venture,       |
| 586 | consortium, commercial entity, corporation (including a government                   |
| 587 | corporation), partnership, association, state, municipality, commission, political   |
| 588 | subdivision of a state, or any interstate body including the United States           |
| 589 | government and each department, agency, and instrumentality of the United            |
| 590 | States. [415 ILCS 5/58.2]                                                            |
| 591 |                                                                                      |
| 592 | "Point of Human Exposure" means the points at which human exposure to a              |
| 593 | contaminant of concern may reasonably be expected to occur. The point of             |
| 594 | human exposure is at the source, unless an institutional control limiting human      |
| 595 | exposure for the applicable exposure route has been or will be in place, in which    |
| 596 | case the point of human exposure will be the boundary of the institutional control.  |
| 597 | Point of human exposure may be at a different location than the point of             |
| 598 | compliance.                                                                          |
| 599 |                                                                                      |
| 600 | "Populated Area" means:                                                              |
| 601 |                                                                                      |
| 602 | an area within the boundaries of a municipality that has a population of             |

|     | JCAR350742-1207340r01                                                                        |
|-----|----------------------------------------------------------------------------------------------|
| 603 | 10,000 or greater based on the year 2000 or most recent census; or                           |
| 604 |                                                                                              |
| 605 | an area less than three miles from the boundary of a municipality that has                   |
| 606 | a population of 10,000 or greater based on the year 2000 or most recent                      |
| 607 | census.                                                                                      |
| 608 |                                                                                              |
| 609 | "Potable" means generally fit for human consumption in accordance with                       |
| 610 | accepted water supply principles and practices. (Illinois Groundwater Protection             |
| 611 | Act [415 ILCS 55/3(h)])                                                                      |
| 612 |                                                                                              |
| 613 | "PQL" means practical quantitation limit or estimated quantitation limit, which is           |
| 614 | the lowest concentration that can be reliably measured within specified limits of            |
| 615 | precision and accuracy for a specific laboratory analytical method during routine            |
| 616 | laboratory operating conditions in accordance with "Test Methods for Evaluating              |
| 617 | Solid Wastes, Physical/Chemical Methods", EPA Publication No. SW-846,                        |
| 618 | incorporated by reference in Section 742.210. When applied to filtered water                 |
| 619 | samples, PQL includes the method detection limit or estimated detection limit in             |
| 620 | accordance with the applicable method revision in: "Methods for the                          |
| 621 | Determination of Organic Compounds in Drinking Water", Supplement II", EPA                   |
| 622 | Publication No. EPA/600/4-88/039; "Methods for the Determination of Organic                  |
| 623 | Compounds in Drinking Water, Supplement III", EPA Publication No.                            |
| 624 | EPA/600/R-95/131, all of which are incorporated by reference in Section                      |
| 625 | 742.210.                                                                                     |
| 626 |                                                                                              |
| 627 | "Q <sub>soil</sub> " means the volumetric flow rate of soil gas from the subsurface into the |
| 628 | enclosed building space.                                                                     |
| 629 |                                                                                              |
| 630 | "RBCA" means Risk Based Corrective Action as defined in ASTM E-1739-95, as                   |
| 631 | incorporated by reference in Section 742.210.                                                |
| 632 |                                                                                              |
| 633 | "RCRA" means the Resource Conservation and Recovery Act of 1976 (42 USC                      |
| 634 | 6921).                                                                                       |
| 635 |                                                                                              |
| 636 | "Reference Concentration" or "RfC" means an estimate of a daily exposure, in                 |
| 637 | units of milligrams of chemical per cubic meter of air (mg/m <sup>3</sup> ), to the human    |
| 638 | population (including sensitive subgroups) that is likely to be without appreciable          |
| 639 | risk of deleterious effects during a portion of a lifetime (up to approximately              |
| 640 | seven years, subchronic) or for a lifetime (chronic).                                        |
| 641 |                                                                                              |
| 642 | "Reterence Dose" or "RtD" means an estimate of a daily exposure, in units of                 |
| 643 | milligrams of chemical per kilogram of body weight per day (mg/kg/d), to the                 |
| 644 | human population (including sensitive subgroups) that is likely to be without                |
| 645 | appreciable risk of deleterious effects during a portion of a lifetime (up to                |

| 646 | approximately seven years subchronic) or for a lifetime (chronic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 647 | approximatory seven years, succimente) or for a meanie (emome).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 648 | "Regulated Substance" means any hazardous substance as defined under Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 649 | 101(14) of the Comprehensive Environmental Response Compensation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 650 | Liability Act of 1980 (P I $96-510$ ) and petroleum products including crude oil or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 651 | any fraction thereof natural gas natural gas liquids liquids duatural gas or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 652 | synthetic as usable for fuel (or mixtures of natural as and such synthetic as)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 653 | [A15 II CS 5/58 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 654 | [415 IEC5 5/58.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 655 | "Peridential Property" magne any real property that is used for habitation by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 656 | individuals or where children have the apportunity for exposure to contaminente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 657 | through soil ingestion or inholation (indeer or outdoor) at advastional facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 659 | has the same facilities, shild some facilities or synthese respectivel energy [415 II CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 650 | 5/58 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 660 | 5/58.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 000 | "Dialt of Way" magnetic low interest the sector sector is the sector is |
| 001 | Right of way means the land, or interest therein, acquired for or devoted to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 002 | nignway. (IIIInois Highway Code [605 ILCS 5/2-217])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 003 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 664 | "Saturated Zone" means a subsurface zone in which all the interstices or voids are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 665 | filled with water under pressure greater than that of the atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 666 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 667 | "Similar-Acting Chemicals" are chemical substances that have toxic or harmful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 668 | effect on the same specific organ or organ system (see Appendix A. Tables E and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 669 | F for a list of similar-acting chemicals with noncarcinogenic and carcinogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 670 | effects).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 671 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 672 | "Site" means any single location, place, tract of land or parcel of property, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 673 | portion thereof, including contiguous property separated by a public right-of-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 674 | way. [415 ILCS 5/58.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 675 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 676 | "Slurry Wall" means a man-made barrier made of geologic material which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 677 | constructed to prevent or impede the movement of contamination into a certain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 678 | area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 679 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 680 | "Soil Gas" means the air existing in void spaces in the soil between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 681 | groundwater table and the ground surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 682 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 683 | "Soil Saturation Limit" or "C <sub>sat</sub> " means the contaminant concentration at which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 684 | the absorptive limits of the soil particles, the solubility limits of the available soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 685 | moisture, and saturation of soil pore air have been reached. Above the soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 686 | saturation concentration, the assumptions regarding vapor transport to air and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 687 | dissolved phase transport to groundwater (for chemicals that are liquid at ambient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 688 | soil temperatures) do not apply, and alternative modeling approaches are required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 689 | the contaminant concentration at which soil pore air and pore water are saturated                       |
|-----|---------------------------------------------------------------------------------------------------------|
| 690 | with the chemical and the adsorptive limits of the soil particles have been reached.                    |
| 691 |                                                                                                         |
| 692 | "Soil Vapor Saturation Limit" or "C <sub>v</sub> <sup>sat</sup> " means the maximum vapor concentration |
| 693 | that can exist in the soil pore air at a given temperature and pressure.                                |
| 694 |                                                                                                         |
| 695 | "Solubility" means a chemical specific maximum amount of solute that can                                |
| 696 | dissolve in a specific amount of solvent (groundwater) at a specific temperature.                       |
| 697 |                                                                                                         |
| 698 | "SPLP" means Synthetic Precipitation Leaching Procedure (Method 1312) as                                |
| 699 | published in "Test Methods for Evaluating Solid Waste, Physical/Chemical                                |
| 700 | Methods", USEPA Publication No. SW-846, as incorporated by reference in                                 |
| 701 | Section 742.210.                                                                                        |
| 702 |                                                                                                         |
| 703 | "SSL" means Soil Screening Levels as defined in USEPA's Soil Screening                                  |
| 704 | Guidance: User's Guide and Technical Background Document, as incorporated by                            |
| 705 | reference in Section 742.210.                                                                           |
| 706 |                                                                                                         |
| 707 | "State <u>Highwayhighway</u> " means State highway as defined in the Illinois Highway                   |
| 708 | Code [605 ILCS 5].                                                                                      |
| 709 |                                                                                                         |
| 710 | "Stratigraphic Unit" means a site-specific geologic unit of native deposited                            |
| 711 | material and/or bedrock of varying thickness (e.g., sand, gravel, silt, clay,                           |
| 712 | bedrock, etc.). A change in stratigraphic unit is recognized by a clearly distinct                      |
| 713 | contrast in geologic material or a change in physical features within a zone of                         |
| 714 | gradation. For the purposes of this Part, a change in stratigraphic unit is identified                  |
| 715 | by one or a combination of differences in physical features such as texture,                            |
| 716 | cementation, fabric, composition, density, and/or permeability of the native                            |
| 717 | material and/or bedrock.                                                                                |
| 718 |                                                                                                         |
| 719 | "Street" means street as defined in the Illinois Highway Code [605 ILCS 5].                             |
| 720 |                                                                                                         |
| 721 | "TCLP" means Toxicity Characteristic Leaching Procedure (Method 1311) as                                |
| 722 | published in "Test Methods for Evaluating Solid Waste, Physical/Chemical                                |
| 723 | Methods", USEPA Publication No. SW-846, as incorporated by reference in                                 |
| 724 | Section 742.210.                                                                                        |
| 725 |                                                                                                         |
| 726 | "Toll <u>Highwayhighway</u> " means toll highway as defined in the Illinois Highway                     |
| 727 | Code [605 ILCS 5].                                                                                      |
| 728 |                                                                                                         |
| 729 | "Total Petroleum Hydrocarbon" or "TPH" means the additive total of all                                  |
| 730 | petroleum hydrocarbons found in an analytical sample.                                                   |
| 731 |                                                                                                         |

| 732                                                                                                                                             |                                     | "Township <u>Road</u> " means township road as defined in the Illinois Highway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 733                                                                                                                                             |                                     | Code [605 ILCS 5].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 734                                                                                                                                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 735                                                                                                                                             |                                     | "Unconfined Aquifer" means an aquifer whose upper surface is a water table free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 736                                                                                                                                             |                                     | to fluctuate under atmospheric pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 737                                                                                                                                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 738                                                                                                                                             |                                     | "Volatile Chemicals" means chemicals with a Dimensionless Henry's Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 739                                                                                                                                             |                                     | Constant of greater than $1.9 \times 10^{-2}$ or a vapor pressure greater than 0.1 Torr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 740                                                                                                                                             |                                     | (mmHg) at 25°C. For purposes of the indoor inhalation exposure route, elemental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 741                                                                                                                                             |                                     | mercury is included in this definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 742                                                                                                                                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 743                                                                                                                                             |                                     | "Volatile Organic Compounds" or "VOCs" means organic chemical analytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 744                                                                                                                                             |                                     | identified as volatiles as published in "Test Methods for Evaluating Solid Waste,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 745                                                                                                                                             |                                     | Physical/Chemical Methods", USEPA Publication No. SW-846 (incorporated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 746                                                                                                                                             |                                     | reference in Section 742.210), method numbers 8011, 8015B, 8021B, 8031,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 747                                                                                                                                             |                                     | 8260B, 8315A, and 8316. For analytes not listed in any category in those                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 748                                                                                                                                             |                                     | methods, those analytes which have a boiling point less than 200°C and a vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 749                                                                                                                                             |                                     | pressure greater than 0.1 Torr (mm Hg) at 20°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 750                                                                                                                                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 751                                                                                                                                             |                                     | "Water Table" means the top water surface of an unconfined aquifer at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 752                                                                                                                                             |                                     | atmospheric pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 753                                                                                                                                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100                                                                                                                                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 754                                                                                                                                             | (Sour                               | ce: Amended at 36 Ill. Reg, effective)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 754<br>755                                                                                                                                      | (Sour                               | ce: Amended at 36 Ill. Reg, effective)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 754<br>755<br>756                                                                                                                               | (Sour<br>Section 742.2              | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 754<br>755<br>756<br>757                                                                                                                        | (Sour<br>Section 742.2              | ce: Amended at 36 Ill. Reg, effective) 210 Incorporations by Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 754<br>755<br>756<br>757<br>758                                                                                                                 | (Sour<br>Section 742.2<br>a)        | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 754<br>755<br>756<br>757<br>758<br>759                                                                                                          | (Sour<br><b>Section 742.2</b><br>a) | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 754<br>755<br>756<br>757<br>758<br>759<br>760                                                                                                   | (Sour<br><b>Section 742.2</b><br>a) | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761                                                                                            | (Sour<br>Section 742.2<br>a)        | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762                                                                                     | (Sour<br><b>Section 742.2</b><br>a) | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763                                                                              | (Sour<br><b>Section 742.2</b><br>a) | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764                                                                       | (Sour<br>Section 742.2<br>a)        | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk<br/>Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road,<br/>Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765                                                                | (Sour<br>Section 742.2<br>a)        | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766                                                         | (Soura<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>767                                                  | (Soura<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585.</li> <li>ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic</li> </ul>                                                                                                                                                                                                                                                                                              |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>767<br>768                                           | (Sour<br>Section 742.2<br>a)        | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference The Board incorporates the following material by reference: Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007). ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585. ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000.</li></ul>                                                                                                                                                                                                                                                                 |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>765<br>766<br>767<br>768<br>769                      | (Soura<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken; PA 19428-2959, (610)832-9585.</li> <li>ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000.</li> </ul>                                                                                                                                                                                                                            |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>767<br>768<br>769<br>770                             | (Soura<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference The Board incorporates the following material by reference: Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007). ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585. ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000. ASTM D 2488-00, Standard Practice for Description and Identification of</li></ul>                                                                                                                                                                                         |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>767<br>768<br>769<br>770<br>771                      | (Sour-<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference The Board incorporates the following material by reference: Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007). ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585. ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000. ASTM D 2488-00, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), approved February 10, 2000.</li></ul>                                                                                                                            |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>765<br>766<br>767<br>768<br>769<br>770<br>771<br>772 | (Soura<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585.</li> <li>ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000.</li> <li>ASTM D 2488-00, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), approved February 10, 2000.</li> </ul>                                                                              |
| 754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>767<br>768<br>769<br>770<br>771<br>772<br>773        | (Soura<br>Section 742.2<br>a)       | <ul> <li>ce: Amended at 36 Ill. Reg, effective)</li> <li>210 Incorporations by Reference</li> <li>The Board incorporates the following material by reference:</li> <li>Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), U.S. Environmental Protection Agency, 1600 Clifton Road, Mailstop F32, Atlanta, Georgia 30333, (770)488-3357 (November 2007).</li> <li>ASTM International. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, (610)832-9585.</li> <li>ASTM D 2974-00, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, approved August 10, 2000.</li> <li>ASTM D 2488-00, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), approved February 10, 2000.</li> <li>ASTM D 1556-00, Standard Test Method for Density and Unit Weight of</li> </ul> |

| 775 |                                                                          |
|-----|--------------------------------------------------------------------------|
| 776 | ASTM D 2167-94, Standard Test Method for Density and Unit Weight of      |
| 777 | Soil in Place by the Rubber Balloon Method, approved March 15, 1994.     |
| 778 |                                                                          |
| 779 | ASTM D 2922-01, Standard Test Methods for Density of Soil and Soil-      |
| 780 | Aggregate in Place by Nuclear Methods (Shallow Depth), approved June     |
| 781 | 10, 2001.                                                                |
| 782 |                                                                          |
| 783 | ASTM D 2937-00e1, Standard Test Method for Density of Soil in Place      |
| 784 | by the Drive-Cylinder Method, approved June 10, 2000.                    |
| 785 |                                                                          |
| 786 | ASTM D 854-02, Standard Test Methods for Specific Gravity of Soil        |
| 787 | Solids by Water Pycnometer, approved July 10, 2002.                      |
| 788 |                                                                          |
| 789 | ASTM D 2216-98, Standard Test Method for Laboratory Determination of     |
| 790 | Water (Moisture) Content of Soil and Rock by Mass, approved February     |
| 791 | 10, 1998.                                                                |
| 792 |                                                                          |
| 793 | ASTM D 4959-00, Standard Test Method for Determination of Water          |
| 794 | (Moisture) Content of Soil by Direct Heating, approved March 10, 2000.   |
| 795 |                                                                          |
| 796 | ASTM D 4643-00, Standard Test Method for Determination of Water          |
| 797 | (Moisture) Content of Soil by the Microwave Oven Method, approved        |
| 798 | February 10, 2000.                                                       |
| 799 |                                                                          |
| 800 | ASTM D 5084-03, Standard Test Methods for Measurement of Hydraulic       |
| 801 | Conductivity of Saturated Porous Materials Using a Flexible Wall         |
| 802 | Permeameter, approved November 1, 2003.                                  |
| 803 |                                                                          |
| 804 | ASTM D 422-63 (2002), Standard Test Method for Particle-Size Analysis    |
| 805 | of Soils, approved November 10, 2002.                                    |
| 806 |                                                                          |
| 807 | ASTM D 1140-00, Standard Test Methods for Amount of Material in          |
| 808 | Soils Finer than the No. 200 (75 $\mu$ m) Sieve, approved June 10, 2000. |
| 809 |                                                                          |
| 810 | ASTM D 3017-01, Standard Test Method for Water Content of Soil and       |
| 811 | Rock in Place by Nuclear Methods (Shallow Depth), approved June 10,      |
| 812 | 2001.                                                                    |
| 813 |                                                                          |
| 814 | ASTM D 4525-90 (2001), Standard Test Method for Permeability of          |
| 815 | Rocks by Flowing Air, approved May 25, 1990.                             |
| 816 |                                                                          |
| 817 | ASTM D 2487-00, Standard Classification of Soils for Engineering         |

| 819         820       ASTM D 1945-03, Standard Test Method for Analysis of Natural Gas by         821       Gas Chromatography, approved May 10, 2003.         822       ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by         823       ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by         824       Gas Chromatography, approved June 1, 2006.         825       Standard Practice for Environmental Site Assessments:         826       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         827       Phase I Environmental Site Assessment Process, approved May 10, 2000.         828       Vol. 11.04.         829       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         830       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         838       into Structures on Property Involved in Real Estate Transactions, approved         840       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         843       BIOV                           | 818 | Purposes (Unified Soil Classification System), approved March 10, 2000.       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------|
| 820       ASTM D 1945-03, Standard Test Method for Analysis of Natural Gas by         821       Gas Chromatography, approved May 10, 2003.         822       ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by         823       ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by         824       Gas Chromatography, approved June 1, 2006.         825       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         826       ASTM E 1527-00, Standard Practice for Risk-Based Corrective         828       Vol. 11.04.         829       Standard Practice for Installing Radon Mitigation         830       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         831       ASTM E 2121-09, Standard Practice for Assessment for Vapor Intrusion         833       ASTM E 2121-09, Standard Practice for Assessment for Vapor Intrusion         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         837       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         838       into Structures on Property Involved in Real Estate Transactions, approved         840       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, | 819 |                                                                               |
| 821       Gas Chromatography, approved May 10, 2003.         822       ASTM D 1946-90. Standard Practice for Analysis of Reformed Gas by         823       ASTM D 1946-90. Standard Practice for Analysis of Reformed Gas by         824       Gas Chromatography, approved June 1, 2006.         825       STM E 1527-00, Standard Practice for Environmental Site Assessments:         826       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         827       Phase I Environmental Site Assessment Process, approved May 10, 2000.         828       Vol. 11.04.         829       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         830       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         831       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         838       into Structures on Property Involved in Real Estate Transactions, approved         840       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         843       Biodegradation, Version 2.0 ( | 820 | ASTM D 1945-03, Standard Test Method for Analysis of Natural Gas by           |
| 822         823       ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by         824       Gas Chromatography, approved June 1, 2006.         825       826         826       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         827       Phase I Environmental Site Assessment Process, approved May 10, 2000.         828       Vol. 11.04.         829       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         830       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       Action Applied at Petroleum Release Sites, approved September 10, 1995.         832       833         833       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         836       into Structures on Property Involved in Real Estate Transactions, approved         839       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       4070 (202)682-8000.         843       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         844       BIOVAPOR-A 1-D Vap                                                              | 821 | Gas Chromatography, approved May 10, 2003.                                    |
| 823       ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by         824       Gas Chromatography, approved June 1, 2006.         825       826         826       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         827       Phase I Environmental Site Assessment Process, approved May 10, 2000.         828       Vol. 11.04.         829       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         837       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         838       into Structures on Property Involved in Real Estate Transactions, approved         839       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       4070 (202)682-8000.         843       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         844       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         845       Biodegradation, Version 2.0 (January 2010).         846       Paermacology, 8, 4                                    | 822 |                                                                               |
| 824       Gas Chromatography, approved June 1, 2006.         825       826         826       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         827       Phase I Environmental Site Assessment Process, approved May 10, 2000.         828       Vol. 11.04.         829       830         830       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       Action Applied at Petroleum Release Sites, approved September 10, 1995.         832       833         833       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       836         837       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         838       into Structures on Property Involved in Real Estate Transactions, approved         840       841         API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       4070 (202)682-8000.         843       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         844       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         845       Biodegradation, Version 2.0 (January 2010).         846                                                                                                 | 823 | ASTM D 1946-90, Standard Practice for Analysis of Reformed Gas by             |
| 825         826       ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         827       Phase I Environmental Site Assessment Process, approved May 10, 2000.         828       Vol. 11.04.         829       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       Action Applied at Petroleum Release Sites, approved September 10, 1995.         832       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         837       ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion         838       into Structures on Property Involved in Real Estate Transactions, approved         840       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       4070 (202)682-8000.         843       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         846       Biodegradation, Version 2.0 (January 2010).         846       Biodegradation, Version 2.0 (January 2010).         847       Barnes, Donald G. and Dourson,                            | 824 | Gas Chromatography, approved June 1, 2006.                                    |
| 826ASTM E 1527-00, Standard Practice for Environmental Site Assessments:<br>Phase I Environmental Site Assessment Process, approved May 10, 2000.<br>Vol. 11.04.829Vol. 11.04.830ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective<br>Action Applied at Petroleum Release Sites, approved September 10, 1995.833ASTM E 2121-09, Standard Practice for Installing Radon Mitigation<br>Systems in Existing Low-Rise Residential Buildings, approved November<br>1, 2009.836ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion<br>into Structures on Property Involved in Real Estate Transactions, approved<br>March 1, 2008.841API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-<br>4070 (202)682-8000.843BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic<br>Biodegradation, Version 2.0 (January 2010).846Barnes, Donald G. and Dourson, Michael_ (1988). Reference Dose (RfD):<br>Description and Use in Health Risk Assessments. Regulatory Toxicology and<br>Pharmacology, 8, 471-486.                                                                                                                                                                                                                                                                                                                                                              | 825 |                                                                               |
| <ul> <li>Phase I Environmental Site Assessment Process, approved May 10, 2000.</li> <li>Vol. 11.04.</li> <li>ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective</li> <li>Action Applied at Petroleum Release Sites, approved September 10, 1995.</li> <li>ASTM E 2121-09, Standard Practice for Installing Radon Mitigation</li> <li>Systems in Existing Low-Rise Residential Buildings, approved November</li> <li>1, 2009.</li> <li>ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion</li> <li>into Structures on Property Involved in Real Estate Transactions, approved</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-</li> <li>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</li> <li>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>Pharmacology, 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                              | 826 | ASTM E 1527-00, Standard Practice for Environmental Site Assessments:         |
| 828       Vol. 11.04.         829       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective         831       Action Applied at Petroleum Release Sites, approved September 10, 1995.         832       833         833       ASTM E 2121-09, Standard Practice for Installing Radon Mitigation         834       Systems in Existing Low-Rise Residential Buildings, approved November         835       1, 2009.         836       837         838       into Structures on Property Involved in Real Estate Transactions, approved         839       March 1, 2008.         841       API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-         842       4070 (202)682-8000.         843       BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic         845       Biodegradation, Version 2.0 (January 2010).         846       847         847       Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):         848       Description and Use in Health Risk Assessments. Regulatory Toxicology and Pharmacology. 8, 471-486.                                                                                                                                                                                                                                     | 827 | Phase I Environmental Site Assessment Process, approved May 10, 2000.         |
| <ul> <li>ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective</li> <li>Action Applied at Petroleum Release Sites, approved September 10, 1995.</li> <li>ASTM E 2121-09, Standard Practice for Installing Radon Mitigation</li> <li>Systems in Existing Low-Rise Residential Buildings, approved November</li> <li>1, 2009.</li> <li>ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion</li> <li>into Structures on Property Involved in Real Estate Transactions, approved</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-</li> <li>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</li> <li>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 828 | Vol. 11.04.                                                                   |
| 830ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective831Action Applied at Petroleum Release Sites, approved September 10, 1995.832833ASTM E 2121-09, Standard Practice for Installing Radon Mitigation834Systems in Existing Low-Rise Residential Buildings, approved November8351, 2009.836837ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion838into Structures on Property Involved in Real Estate Transactions, approved839March 1, 2008.840841API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-8424070 (202)682-8000.843BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic846Biodegradation, Version 2.0 (January 2010).846Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):848Description and Use in Health Risk Assessments. Regulatory Toxicology and849Pharmacology, 8, 471-486.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 829 |                                                                               |
| 831Action Applied at Petroleum Release Sites, approved September 10, 1995.8328338348348351, 2009.836837838838839March 1, 2008.840841841842843844844845846847848848849849849849849849849849849849849849849849849849849840841842843844844845847848848849849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 830 | ASTM E 1739-95 (2002), Standard Guide for Risk-Based Corrective               |
| <ul> <li>ASTM E 2121-09, Standard Practice for Installing Radon Mitigation</li> <li>Systems in Existing Low-Rise Residential Buildings, approved November</li> <li>1, 2009.</li> <li>ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion</li> <li>into Structures on Property Involved in Real Estate Transactions, approved</li> <li>March 1, 2008.</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-</li> <li>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</li> <li>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 831 | Action Applied at Petroleum Release Sites, approved September 10, 1995.       |
| 833ASTM E 2121-09, Standard Practice for Installing Radon Mitigation834Systems in Existing Low-Rise Residential Buildings, approved November8351, 2009.836.837ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion838into Structures on Property Involved in Real Estate Transactions, approved839March 1, 2008.840.841API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-8424070 (202)682-8000.843.844BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic845Biodegradation, Version 2.0 (January 2010).846.847Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):848Description and Use in Health Risk Assessments. Regulatory Toxicology and849Pharmacology. 8, 471-486.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 832 |                                                                               |
| 834Systems in Existing Low-Rise Residential Buildings, approved November8351, 2009.836837ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion838into Structures on Property Involved in Real Estate Transactions, approved839March 1, 2008.840841841API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-8424070 (202)682-8000.843BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic846Biodegradation, Version 2.0 (January 2010).846Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):848Description and Use in Health Risk Assessments. Regulatory Toxicology and849Pharmacology. 8, 471-486.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 833 | ASTM E 2121-09, Standard Practice for Installing Radon Mitigation             |
| <ul> <li>1, 2009.</li> <li>ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion</li> <li>into Structures on Property Involved in Real Estate Transactions, approved</li> <li>March 1, 2008.</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-</li> <li>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</li> <li>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>Pharmacology, 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 834 | Systems in Existing Low-Rise Residential Buildings, approved November         |
| <ul> <li>ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion</li> <li>into Structures on Property Involved in Real Estate Transactions, approved</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-</li> <li>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</li> <li>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 835 | <u>1, 2009.</u>                                                               |
| <ul> <li>ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion<br/>into Structures on Property Involved in Real Estate Transactions, approved<br/>March 1, 2008.</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-<br/>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic<br/>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):<br/>Description and Use in Health Risk Assessments. Regulatory Toxicology and<br/>Pharmacology, 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 836 |                                                                               |
| <ul> <li>into Structures on Property Involved in Real Estate Transactions, approved<br/>March 1, 2008.</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-<br/>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic<br/>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):<br/>Description and Use in Health Risk Assessments. Regulatory Toxicology and<br/>Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 837 | ASTM E 2600-08, Standard Practice for Assessment for Vapor Intrusion          |
| <ul> <li>March 1, 2008.</li> <li>March 1, 2008.</li> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-<br/>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic<br/>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):<br/>Description and Use in Health Risk Assessments. Regulatory Toxicology and<br/>Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 838 | into Structures on Property Involved in Real Estate Transactions, approved    |
| <ul> <li>840</li> <li>841 <u>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-</u></li> <li>842 <u>4070 (202)682-8000.</u></li> <li>843</li> <li>844 <u>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic Biodegradation, Version 2.0 (January 2010).</u></li> <li>846</li> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 839 | March 1, 2008.                                                                |
| <ul> <li>API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-<br/>4070 (202)682-8000.</li> <li>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic<br/>Biodegradation, Version 2.0 (January 2010).</li> <li>Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):<br/>Description and Use in Health Risk Assessments. Regulatory Toxicology and<br/>Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 840 |                                                                               |
| <ul> <li>842 <u>4070 (202)682-8000.</u></li> <li>843</li> <li>844 <u>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic Biodegradation, Version 2.0 (January 2010).</u></li> <li>846</li> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 841 | API. American Petroleum Institute, 1220 L Street, NW, Washington DC 20005-    |
| <ul> <li>843</li> <li>844 <u>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</u></li> <li>845 <u>Biodegradation, Version 2.0 (January 2010).</u></li> <li>846</li> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>849 Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 842 | 4070 (202)682-8000.                                                           |
| <ul> <li>844 <u>BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic</u></li> <li>845 <u>Biodegradation, Version 2.0 (January 2010).</u></li> <li>846</li> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>849 Pharmacology, 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 843 |                                                                               |
| <ul> <li>845 <u>Biodegradation, Version 2.0 (January 2010).</u></li> <li>846</li> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>849 Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 844 | BIOVAPOR-A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic              |
| <ul> <li>846</li> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>849 Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 845 | Biodegradation, Version 2.0 (January 2010).                                   |
| <ul> <li>847 Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):</li> <li>848 Description and Use in Health Risk Assessments. Regulatory Toxicology and</li> <li>849 Pharmacology. 8, 471-486.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 846 |                                                                               |
| 848 Description and Use in Health Risk Assessments. Regulatory Toxicology and<br>849 Pharmacology. 8, 471-486.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 847 | Barnes, Donald G. and Dourson, Michael. (1988). Reference Dose (RfD):         |
| 849 Pharmacology, 8, 471-486.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 848 | Description and Use in Health Risk Assessments. Regulatory Toxicology and     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 849 | Pharmacology. 8, 471-486.                                                     |
| 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 850 |                                                                               |
| 851 EPRI. Electric Power Research Institute. 3420 Hillview Avenue, Palo Alto,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 851 | EPRI. Electric Power Research Institute. 3420 Hillview Avenue, Palo Alto,     |
| 852 California 94304. (650)855-2121.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 852 | California 94304. (650)855-2121.                                              |
| 853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 853 |                                                                               |
| 854 Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soil in Illinois:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 854 | Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soil in Illinois:          |
| 855 Background PAHs, EPRI, Palo Alto CA, We Energies, Milwaukee WI and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 855 | Background PAHs, EPRI, Palo Alto CA, We Energies, Milwaukee WI and            |
| 856 IEPA, Springfield IL: 2004. 1011376.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 856 | IEPA, Springfield IL: 2004. 1011376.                                          |
| 857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 857 |                                                                               |
| 858 Reference Handbook for Site-Specific Assessment of Subsurface Vapor Intrusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 858 | Reference Handbook for Site-Specific Assessment of Subsurface Vapor Intrusion |
| to Indoor Air, Electric Power Research Institute (EPRI), Inc., Program No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 859 | to Indoor Air, Electric Power Research Institute (EPRI), Inc., Program No.    |
| 860 <u>1008492 (March 2005).</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 860 | 1008492 (March 2005).                                                         |

| 861 |                                                                           |
|-----|---------------------------------------------------------------------------|
| 862 | GPO. Superintendent of Documents, U.S. Government Printing Office,        |
| 863 | Washington, DC 20401, (202)783-3238.                                      |
| 864 |                                                                           |
| 865 | USEPA Guidelines for Carcinogenic Risk Assessment, 51 Fed. Reg.           |
| 866 | 33992-34003 (September 24, 1986).                                         |
| 867 |                                                                           |
| 868 | "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods",     |
| 869 | USEPA Publication number SW-846 (Third Edition, Final Update IIIA,        |
| 870 | April 1998), as amended by Updates I, IIA, III, and IIIA (Document No.    |
| 871 | 955-001-00000-1).                                                         |
| 872 |                                                                           |
| 873 | "Methods for the Determination of Organic Compounds in Drinking           |
| 874 | Water", EPA Publication No. EPA/600/4-88/039 (December 1988               |
| 875 | (Revised July 1991)).                                                     |
| 876 |                                                                           |
| 877 | "Methods for the Determination of Organic Compounds in Drinking           |
| 878 | Water, Supplement I", EPA Publication No. EPA/600/4-90/020 (July          |
| 879 | 1990).                                                                    |
| 880 |                                                                           |
| 881 | "Methods for the Determination of Organic Compounds in Drinking           |
| 882 | Water, Supplement II", EPA Publication No. EPA/600/R-92/129 (August       |
| 883 | 1992).                                                                    |
| 884 |                                                                           |
| 885 | "Methods for the Determination of Organic Compounds in Drinking           |
| 886 | Water, Supplement III", EPA Publication No. EPA/600/R-95/131 (August      |
| 887 | 1995).                                                                    |
| 888 |                                                                           |
| 889 | "Guidance for Data Quality Assessment, Practical Methods for Data         |
| 890 | Analysis, EPA QA/G-9, QAOO Update," EPA/600/R-96/084 (July 2000).         |
| 891 | Available at www.epa.gov/quality/qs-docs/g9-final.pdf.                    |
| 892 |                                                                           |
| 893 | <u>"Assessment of Vapor Intrusion in Homes Near the Raymark Superfund</u> |
| 894 | Site Using Basement and Sub-Slab Air Samples", EPA Publication No.        |
| 895 | <u>EPA/600/R-05/147 (March 2006).</u>                                     |
| 896 |                                                                           |
| 897 | "Model Standards and Techniques for Control of Radon in New               |
| 898 | Residential Buildings" EPA Publication No. EPA/402/R-94/009 (March        |
| 899 | <u>1994).</u>                                                             |
| 900 |                                                                           |
| 901 | "Radon Reduction Techniques for Existing Detached Houses: Technical       |
| 902 | Guidance (Third Edition) for Active Soil Depressurization Systems", EPA   |
| 903 | Publication No. EPA/625/R-93/011 (October 1993).                          |

| 904                     |                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------|
| 905                     | Illinois Environmental Protection Agency, 1021 N. Grand Ave East, Springfield         |
| 906                     | IL 62701, (217)785-0830.                                                              |
| 907                     |                                                                                       |
| 908                     | "A Summary of Selected Background Conditions for Inorganics in Soil".                 |
| 909                     | Publication No. IEPA/ENV/94-161 (August 1994).                                        |
| 910                     |                                                                                       |
| 911                     | IRIS. Integrated Risk Information System, National Center for Environmental           |
| 912                     | Assessment, U.S. Environmental Protection Agency, 26 West Martin Luther King          |
| 913                     | Drive. MS-190, Cincinnati, OH 45268, (513)569-7254.                                   |
| 914                     |                                                                                       |
| 915                     | "Reference Dose (RfD): Description and Use in Health Risk                             |
| 916                     | Assessments", Background Document 1A (March 15, 1993)                                 |
| 917                     |                                                                                       |
| 918                     | "EPA Approach for Assessing the Risks Associated with Chronic                         |
| 919                     | Exposures to Carcinogens". Background Document 2 (January 17, 1992)                   |
| 920                     | Enposition to Carolinogono, Buonground Boounion 2 (Vanaary 17, 1992).                 |
| 921                     | Johnson, Paul C. (2005). Identification of Application Specific Critical Inputs for   |
| 922                     | the 1991 Johnson and Ettinger Vapor Intrusion Algorithm Ground Water                  |
| 923                     | Monitoring and Remediation 25(1) 63-78                                                |
| 924                     | internet and remediation. 20(1), 05-70.                                               |
| 925                     | Murray Donald M and Burmaster David E (1995) Residential Air Exchange                 |
| 926                     | Rates in the United States: Empirical and Estimated Parametric Distributions by       |
| 927                     | Season and Climatic Region Risk Analysis 15(4) 459-465                                |
| 928                     | Souson and Chinado Rogion, Rok Finalysis, 15(1), 155-165.                             |
| 929                     | Nelson D.W. and L.F. Sommers (1982). Total carbon organic carbon and                  |
| 930                     | organic matter In: A I Page (ed.) Methods of Soil Analysis Part 2 Chemical            |
| 931                     | and Microbiological Properties 2 <sup>nd</sup> Edition pp 539-579 American Society of |
| 932                     | Agronomy Madison WI                                                                   |
| 933                     |                                                                                       |
| 934                     | NTIS National Technical Information Service, 5285 Port Royal Road                     |
| 935                     | Springfield VA 22161 (703)487-4600                                                    |
| 936                     | Springhold, 111 22101, (103)407-4000.                                                 |
| 937                     | "Calculating Upper Confidence Limits for Exposure Point Concentrations                |
| 938                     | at Hazardous Waste Sites " USEPA Office of Emergency and Remedial                     |
| 939                     | Response OSWER 9285 6-10 (December 2002) PB 2003-104982                               |
| 940                     | (1000000000000000000000000000000000000                                                |
| 941                     | "Evaluating the Vanor Intrusion to Indoor Air Pathway from Groundwater                |
| 947                     | and Soils" OSWER Draft Guidance EPA Publication No. EPA/520D                          |
| 0/13                    | 02/004 (November 2002)                                                                |
| 04A                     | $\frac{02}{004} (1000000001 2002).$                                                   |
| 045                     | "Exposures Factors Handbook Vol I. General Factors" EDA Dublication                   |
| 9 <del>1</del> 5<br>046 | No. EDA/600/D 05/002Eo (August 1007)                                                  |
| 240                     | 10. 11 A 000/1 - 75/0021 a (August 1997).                                             |

| 947 |                                                                       |
|-----|-----------------------------------------------------------------------|
| 948 | "Exposures Factors Handbook, Vol. II: Food Ingestion Factors", EPA    |
| 949 | Publication No. EPA/600/P-95/002Fb (August 1997).                     |
| 950 |                                                                       |
| 951 | "Exposures Factors Handbook, Vol. III: Activity Factors", EPA         |
| 952 | Publication No. EPA/600/P-95/002Fc (August 1997).                     |
| 953 |                                                                       |
| 954 | "Risk Assessment Guidance for Superfund, Vol. I: Human Health         |
| 955 | Evaluation Manual, Supplemental Guidance: Standard Default Exposure   |
| 956 | Factors", OSWER Directive 9285.6-03 (March 1991).                     |
| 957 |                                                                       |
| 958 | "Rapid Assessment of Exposure to Particulate Emissions from Surface   |
| 959 | Contamination Sites;", EPA Publication No. EPA/600/8-85/002 (February |
| 960 | 1985), PB 85-192219.                                                  |
| 961 |                                                                       |
| 962 | "Risk Assessment Guidance for Superfund, Volume I: Human Health       |
| 963 | Evaluation Manual (Part A)", Interim Final, EPA Publication No.       |
| 964 | EPA/540/1-89/002 (December 1989).                                     |
| 965 |                                                                       |
| 966 | "Risk Assessment Guidance for Superfund, Volume I: Human Health       |
| 967 | Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment      |
| 968 | Interim Guidance", Draft (August 18, 1992).                           |
| 969 |                                                                       |
| 970 | "Risk Assessment Guidance for Superfund, Vol. I: Human Health         |
| 971 | Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk      |
| 972 | Assessment) FinalInterim", EPA Publication No. EPA/540/R/99/005 (July |
| 973 | <u>2004September 2001</u> ).                                          |
| 974 |                                                                       |
| 975 | "Risk Assessment Guidance for Superfund, Vol. 1: Human Health         |
| 976 | Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk  |
| 977 | Assessment) Final", EPA Publication No. 540-R-070-002 (January 2009). |
| 978 |                                                                       |
| 979 | "Soil Screening Guidance: Technical Background Document", EPA         |
| 980 | Publication No. EPA/540/R-95/128, PB 96-963502 (May 1996).            |
| 981 |                                                                       |
| 982 | "Soil Screening Guidance: User's Guide", EPA Publication No.          |
| 983 | EPA/540/R-96/018, PB 96-963505 (April 1996).                          |
| 984 |                                                                       |
| 985 | "Superfund Exposure Assessment Manual", EPA Publication No.           |
| 986 | EPA/540/1-88/001 (April 1988).                                        |
| 987 |                                                                       |
| 988 | "Supplemental Guidance for Developing Soil Screening Levels for       |
| 989 | Supertund Sites", OSWER Directive 9355.4-24 (December 2002).          |

| 990  |                                                                               |
|------|-------------------------------------------------------------------------------|
| 991  | "Users Guide for Evaluating Subsurface Vapor Intrusion into Buildings",       |
| 992  | EPA. EPA/68/W-02/33 (February 2004).                                          |
| 993  |                                                                               |
| 994  | Polynuclear Aromatic Hydrocarbon Background Study, City of Chicago, Illinois, |
| 995  | Tetra Tech Em Inc., 200 E. Randolph Drive, Suite 4700, Chicago, IL 60601,     |
| 996  | February 24, 2003.                                                            |
| 997  |                                                                               |
| 998  | Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soil in Illinois:          |
| 999  | Background PAHs, EPRI, Palo Alto, CA, We Energies, Milwaukee, WI, and         |
| 1000 | IEPA, Springfield, IL: 2004. 1011376. EPRI, 3412 Hillview Avenue, Palo Alto,  |
| 1001 | <del>CA 94304, (800) 313-3774.</del>                                          |
| 1002 |                                                                               |
| 1003 | RCRA Facility Investigation Guidance, Interim Final, developed by USEPA (EPA  |
| 1004 | 530/SW-89-031), 4 volumes (May 1989).                                         |
| 1005 |                                                                               |
| 1006 | United States Environmental Protection Agency, Office of Environmental        |
| 1007 | Information (2000). "Guidance for Data Quality Assessment, Practical Methods  |
| 1008 | for Data Analysis," EPA QA/G-9, QAOO update. EPA Publication No.              |
| 1009 | EPA/600/R-96-084. (Available online at www.epa.gov/oswer/riskassessment/      |
| 1010 | pdf/ucl.pdf).                                                                 |
| 1011 |                                                                               |
| 1012 | United States Environmental Protection Agency, Office of Solid Waste and      |
| 1013 | Emergency Response (2003). "Human Health Toxicity Values in Superfund Risk    |
| 1014 | Assessments," OSWER Directive 9285.7-53. (Available at http://www.epa.gov/    |
| 1015 | oswer/riskassessment/pdf/hhmemo.pdf.)                                         |
| 1016 |                                                                               |
| 1017 | United States Environmental Protection Agency, Compendium of Methods for      |
| 1018 | Determination of Toxic Organic Compounds in Ambient Air, Second Edition,      |
| 1019 | EPA Publication No. EPA/625/R-96/010b, January 1999, available at             |
| 1020 | http://www.epa.gov/ttnamti1/files/ambient/airtox/tocomp99.pdf.                |
| 1021 |                                                                               |
| 1022 | United States Environmental Protection Agency, Test Methods for Evaluating    |
| 1023 | Solid Waste, Physical/Chemical Methods, SW-846 through Revision IVB           |
| 1024 | (February 2007), available at http://www.epa.gov/sw-846/main.htm.             |
| 1025 |                                                                               |
| 1026 | United States Environmental Protection Agency, CFR Promulgated Test Methods,  |
| 1027 | Methods 3C and 16, Technology Transfer Network, Emission Measurement          |
| 1028 | Center (2007), available at http://www.epa.gov/ttn/emc/promgate.html.         |
| 1029 |                                                                               |
| 1030 | United States Environmental Protection Agency (2005). "Guidelines for         |
| 1031 | Carcinogen Risk Assessment (2005)". U.S. Environmental Protection Agency,     |

| 1032 |                | Washington, DC, EPA Publication No. EPA/630/P-03/001F, 2005. (Available at       |
|------|----------------|----------------------------------------------------------------------------------|
| 1033 |                | <u>nup://cipub.epa.gov/ncea/rai/recordisplay.cim/deld=116283.)</u>               |
| 1034 |                |                                                                                  |
| 1035 |                | <u>vapor intrusion Pathway: A Practical Guide</u> , Technical and Regulatory     |
| 1036 |                | Guidance. Interstate Technology and Regulatory Council (January 2007).           |
| 1037 | • \            |                                                                                  |
| 1038 | b)             | CFR (Code of Federal Regulations). Available from the Superintendent of          |
| 1039 |                | Documents, U.S. Government Printing Office, Washington, D.C. 20402               |
| 1040 |                | (202)783-3238:                                                                   |
| 1041 |                |                                                                                  |
| 1042 |                | 40 CFR 761 (1998).                                                               |
| 1043 |                |                                                                                  |
| 1044 | c)             | This Section incorporates no later editions or amendments.                       |
| 1045 |                |                                                                                  |
| 1046 | (Sourc         | e: Amended at 36 Ill. Reg, effective)                                            |
| 1047 |                |                                                                                  |
| 1048 | Section 742.2  | 20 Determination of Soil Saturation Limit                                        |
| 1049 |                |                                                                                  |
| 1050 | a)             | For any organic contaminant that has a melting point below 30°C, the remediation |
| 1051 |                | objective for the outdoor inhalation exposure route developed under Tier 2 shall |
| 1052 |                | not exceed the soil saturation limit, as determined under subsection (c) of this |
| 1053 |                | Section.                                                                         |
| 1054 |                |                                                                                  |
| 1055 | b)             | For any organic contaminant that has a melting point below 30°C, the remediation |
| 1056 |                | objective under Tier 2 for the soil component of the groundwater ingestion       |
| 1057 |                | exposure route shall not exceed the soil saturation limit, as determined under   |
| 1058 |                | subsection (c) of this Section.                                                  |
| 1059 |                |                                                                                  |
| 1060 | c)             | The soil saturation limit shall be:                                              |
| 1061 | ,              |                                                                                  |
| 1062 |                | 1) The value listed in Appendix A. Table A for that specific contaminant:        |
| 1063 |                | -)                                                                               |
| 1064 |                | 2) A value derived from Equation S29 in Appendix C. Table A: or                  |
| 1065 |                |                                                                                  |
| 1066 |                | 3) A value derived from another method approved by the Agency                    |
| 1067 |                |                                                                                  |
| 1068 | (Sourc         | e: Amended at 36 III Reg effective )                                             |
| 1069 | (50410         |                                                                                  |
| 1070 | Section 742.2  | 22. Determination of Soil Vanor Saturation Limit                                 |
| 1071 | Section / TA.A | <b>2</b> Southington of Son vapor Saturation Linit                               |
| 1072 | a)             | For any volatile chemical, the soil gas remediation objective for the indoor and |
| 1072 | <u>a</u> j     | outdoor inhalation exposure routes developed under Tier 2 shall not exceed the   |
| 1074 |                | soil vanor saturation limit as determined under subsection (b)                   |
| 10/4 |                | $\frac{5011}{2}$ vapor saturation mint, as determined under subsection (0).      |

| 1075 |               |                 |                                                                             |
|------|---------------|-----------------|-----------------------------------------------------------------------------|
| 1076 | b)            | The s           | oil vapor saturation limit shall be:                                        |
| 1077 |               |                 |                                                                             |
| 1078 |               | 1)              | The value listed in Appendix A, Table K for that specific contaminant;      |
| 1079 |               |                 |                                                                             |
| 1080 |               | 2)              | A value derived from Equation J&E5 in Appendix C, Table L; or               |
| 1081 |               |                 | • • • • • • •                                                               |
| 1082 |               | <u>3)</u>       | A value derived from another method approved by the Agency.                 |
| 1083 |               |                 |                                                                             |
| 1084 | (Sour         | ce: Add         | ded at 36 Ill. Reg, effective)                                              |
| 1085 |               |                 |                                                                             |
| 1086 | Section 742.2 | 225 De          | monstration of Compliance with Soil and Groundwater Remediation             |
| 1087 | Objectives    |                 |                                                                             |
| 1088 |               |                 |                                                                             |
| 1089 | Compliance y  | <u>with soi</u> | l and groundwater remediation objectives is achieved if each sample result  |
| 1090 | does not exce | ed that         | respective remediation objective unless a person elects to proceed under    |
| 1091 | subsections ( | c), (d) a       | nd (e) of this Section.                                                     |
| 1092 |               |                 |                                                                             |
| 1093 | a)            | Comp            | bliance with groundwater remediation objectives developed under Subparts    |
| 1094 |               | D thro          | ough F and H through I shall be demonstrated by comparing the contaminant   |
| 1095 |               | conce           | ntrations of discrete samples at each sample point to the applicable        |
| 1096 |               | groun           | dwater remediation objective. Sample points shall be determined by the      |
| 1097 |               | progra          | am under which remediation is performed.                                    |
| 1098 |               |                 |                                                                             |
| 1099 | b)            | Unles           | s the person elects to composite samples or average sampling results as     |
| 1100 |               | provid          | ded in subsections (c) and (d) of this Section, compliance with soil        |
| 1101 |               | remed           | liation objectives developed under Subparts D through G and I shall be      |
| 1102 |               | demo            | nstrated by comparing the contaminant concentrations of discrete samples to |
| 1103 |               | the ap          | plicable soil remediation objective.                                        |
| 1104 |               |                 |                                                                             |
| 1105 |               | 1)              | Except as provided in subsections (c) and (d) of this Section, compositing  |
| 1106 |               |                 | of samples is not allowed.                                                  |
| 1107 |               |                 |                                                                             |
| 1108 |               | 2)              | Except as provided in subsections (c) and (d) of this Section, averaging of |
| 1109 |               |                 | sample results is not allowed.                                              |
| 1110 |               |                 |                                                                             |
| 1111 |               | 3)              | Notwithstanding subsections (c) and (d) of this Section, compositing of     |
| 1112 |               | -               | samples and averaging of sample results is not allowed for the              |
| 1113 |               |                 | construction worker population.                                             |
| 1114 |               |                 |                                                                             |
| 1115 |               | 4)              | The number of sampling points required to demonstrate compliance is         |
| 1116 |               | ,               | determined by the requirements applicable to the program under which        |
| 1117 |               |                 | remediation is performed.                                                   |

| 1118 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|------|----|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1119 | c) | If a person chooses to composite soil samples or average soil sample results to |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1120 |    | demonstrate compliance relative to the soil component of the groundwater        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1121 |    | ingestion exposure route, the following requirements apply:                     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1122 |    | _                                                                               | _                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1123 |    | 1)                                                                              | 1) A minimum of two sampling locations for every 0.5 acre of contaminate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1124 |    | ,                                                                               | area is                                                                  | s required, with discrete samples at each sample location obtained at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1125 |    |                                                                                 | every                                                                    | two feet of depth, beginning at six inches below the ground surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1126 |    |                                                                                 | for su                                                                   | rface contamination and at the upper limit of contamination for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1127 |    |                                                                                 | subsu                                                                    | rface contamination and continuing through the zone of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1128 |    |                                                                                 | contar                                                                   | nination. Alternatively, a sampling method may be approved by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1129 |    |                                                                                 | Agenc                                                                    | cy based on an appropriately designed site-specific evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1130 |    |                                                                                 | Sampl                                                                    | les obtained at or below the water table shall not be used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1131 |    |                                                                                 | compo                                                                    | ositing or averaging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1132 |    |                                                                                 | 1                                                                        | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1133 |    | 2)                                                                              | For co                                                                   | ontaminants of concern other than volatile chemicals <del>organic</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 1134 |    | /                                                                               | contar                                                                   | ninants:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1135 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1136 |    |                                                                                 | A)                                                                       | Discrete samples from the same boring may be composited: or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 1137 |    |                                                                                 | /                                                                        | I Friday in the second s |  |  |
| 1138 |    |                                                                                 | B)                                                                       | Discrete sample results from the same boring may be averaged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1139 |    |                                                                                 | ,                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1140 |    | 3)                                                                              | For vo                                                                   | olatile <u>chemicalsorganic contaminants</u> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 1141 |    | ,                                                                               |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1142 |    |                                                                                 | A)                                                                       | Compositing of samples is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1143 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1144 |    |                                                                                 | B)                                                                       | Discrete sample results from the same boring may be averaged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1145 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1146 |    | 4)                                                                              | Comp                                                                     | osite samples may not be averaged. An arithmetic average may be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1147 |    |                                                                                 | calcula                                                                  | ated for discrete samples collected at every two feet of depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 1148 |    |                                                                                 | throug                                                                   | the zone of contamination as specified in subsection (c)(1) of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1149 |    |                                                                                 | Sectio                                                                   | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1150 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1151 | d) | If a pe                                                                         | rson ch                                                                  | ooses to composite soil samples or average soil sample results to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1152 |    | demonstrate compliance relative to the outdoor inhalationinhalation exposure    |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1153 |    | route o                                                                         | or inges                                                                 | tion exposure route, the following requirements apply:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1154 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1155 |    | 1)                                                                              | A pers                                                                   | son shall submit a sampling plan for Agency approval, based upon a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1156 |    |                                                                                 | site-sp                                                                  | pecific evaluation;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1157 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1158 |    | 2)                                                                              | For vo                                                                   | platile <u>chemicalsorganic compounds</u> , compositing of samples is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1159 |    |                                                                                 | allowe                                                                   | ed;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1160 |    |                                                                                 |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

| 1161 |                | 3)          | All samples shall be collected within the contaminated area:-               |
|------|----------------|-------------|-----------------------------------------------------------------------------|
| 1162 |                | 1)          |                                                                             |
| 1103 |                | 4)          | Composite samples may not be averaged. Procedures specified in              |
| 1164 |                |             | Calculating Upper Confidence Limits for Exposure Point Concentrations       |
| 1165 |                |             | at Hazardous Waste Sites", USEPA Office of Emergency and Remedial           |
| 1166 |                | -           | Response, OSWER 9285.6-10 (December 2002), as incorporated by               |
| 1167 |                | :           | reference in Section 742.210, or an alternative procedure approved by the   |
| 1168 |                |             | Agency, shall be used to determine sample averages.                         |
| 1169 |                |             |                                                                             |
| 1170 | e)             | When a      | veraging under this Section, if no more than 15% of sample results are      |
| 1171 |                | reported    | l as "non-detect", "no contamination", "below detection limits", or similar |
| 1172 |                | terms, s    | uch results shall be included in the averaging calculations as one-half the |
| 1173 |                | reported    | analytical detection limit for the contaminant. However, when               |
| 1174 |                | perform     | ing a test for normal or lognormal distribution for the purpose of          |
| 1175 |                | calculat    | ing a 95% Upper Confidence Limit of the mean for a contaminant, a           |
| 1176 |                | person 1    | nay substitute for each non-detect value a randomly generated value         |
| 1177 |                | betweer     | n, but not including, zero and the reported analytical detection limit. If  |
| 1178 |                | more th     | an 15% of sample results are "non-detect", procedures specified in          |
| 1179 |                | "Guidar     | nce for Data Quality Assessment, Practical Methods for Data Analysis,       |
| 1180 |                | EPA QA      | A/G-9, QA00 Update", EPA/600/R-96/084 (July 2000), as incorporated by       |
| 1181 |                | reference   | e in Section 742.210, or an alternative procedure approved by the Agency    |
| 1182 |                | shall be    | used to address the non-detect values, or another statistically valid       |
| 1183 |                | procedu     | re approved by the Agency may be used to determine an average.              |
| 1184 |                | •           |                                                                             |
| 1185 | f)             | All soil    | samples collected after August 15, 2001, shall be reported on a dry weight  |
| 1186 | ,              | basis for   | r the purpose of demonstrating compliance, with the exception of the        |
| 1187 |                | TCLP a      | nd SPLP and the property pH.                                                |
| 1188 |                |             |                                                                             |
| 1189 | (Sour          | ce: Amer    | ided at 36 Ill. Reg., effective )                                           |
| 1190 |                |             |                                                                             |
| 1191 | Section 742.2  | 227 Dem     | onstration of Compliance with Soil Gas Remediation Objectives for           |
| 1192 | the Outdoor    | and Indo    | oor Inhalation Exposure Routes                                              |
| 1193 |                |             |                                                                             |
| 1194 | Compliance s   | shall be de | emonstrated by comparing the contaminant concentrations of discrete         |
| 1195 | samples at ea  | ch sample   | e point to the applicable soil gas remediation objective. As specified in   |
| 1196 | Section 742.5  | 510(c), the | e soil gas remediation objectives for the outdoor inhalation exposure route |
| 1197 | are contained  | in Appen    | dix B, Table G. As specified in Section 742.515, the soil gas remediation   |
| 1198 | objectives for | the indoc   | or inhalation exposure route are contained in Appendix B, Tables H and I.   |
| 1199 | This Section   | applies to  | exterior soil gas samples or near-slab samples collected outside a          |
| 1200 | building. Pro  | posals to   | use sub-slab soil gas data for the indoor inhalation exposure route shall   |
| 1201 | follow Sectio  | n 742.935   | <u>5(c).</u>                                                                |
| 1202 |                |             |                                                                             |

| 1203 | <u>a)</u>      | Sample points shall be determined by the program under which remediation is              |  |  |  |  |  |
|------|----------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1204 |                | performed.                                                                               |  |  |  |  |  |
| 1205 | 1 \            | TT 71 11 .' '1 1                                                                         |  |  |  |  |  |
| 1206 | <u>b)</u>      | When collecting soil gas samples:                                                        |  |  |  |  |  |
| 1207 |                |                                                                                          |  |  |  |  |  |
| 1208 |                | 1) Use rigid-wall tubing made of nylon or Teflon <sup>®</sup> or other material approved |  |  |  |  |  |
| 1209 |                | by the Agency;                                                                           |  |  |  |  |  |
| 1210 |                |                                                                                          |  |  |  |  |  |
| 1211 |                | 2) Use gas-tight, inert containers to hold the sample. For light sensitive or            |  |  |  |  |  |
| 1212 |                | halogenated volatile chemicals, these containers shall be opaque or dark-                |  |  |  |  |  |
| 1213 |                | <u>colored;</u>                                                                          |  |  |  |  |  |
| 1214 |                |                                                                                          |  |  |  |  |  |
| 1215 |                | 3) Purge three volumes before obtaining each discrete soil gas sample;                   |  |  |  |  |  |
| 1216 |                |                                                                                          |  |  |  |  |  |
| 1217 |                | 4) Use a helium tracer or other leak apparatus detection system approved by              |  |  |  |  |  |
| 1218 |                | the Agency; and                                                                          |  |  |  |  |  |
| 1219 |                |                                                                                          |  |  |  |  |  |
| 1220 |                | 5) Limit the flow rate to 200 ml/min.                                                    |  |  |  |  |  |
| 1221 |                |                                                                                          |  |  |  |  |  |
| 1222 | c)             | Soil gas samples shall be analyzed using a National Environmental Laboratory             |  |  |  |  |  |
| 1223 | <u>_</u>       | Accreditation Program (NELAP) certified laboratory.                                      |  |  |  |  |  |
| 1224 |                |                                                                                          |  |  |  |  |  |
| 1225 | (b             | Soil gas remediation objectives shall be compared to concentrations of soil gas          |  |  |  |  |  |
| 1226 | <u></u> /      | collected at a depth at least 3 feet below ground surface and above the saturated        |  |  |  |  |  |
| 1227 |                | zone                                                                                     |  |  |  |  |  |
| 1228 |                | 20110.                                                                                   |  |  |  |  |  |
| 1220 | (Sour          | ce: Added at 36 Ill Reg effective                                                        |  |  |  |  |  |
| 122) | (500           |                                                                                          |  |  |  |  |  |
| 1230 |                | SUBPART C: EXPOSURE ROUTE EVALUATIONS                                                    |  |  |  |  |  |
| 1231 |                | SUBLINE C. EM USURE ROUTE EVALUATIONS                                                    |  |  |  |  |  |
| 1232 | Section 742    | 305 Contaminant Source and Free Product Determination                                    |  |  |  |  |  |
| 1233 | Section 742.   | 505 Contaminant Source and Free Froduct Deter initiation                                 |  |  |  |  |  |
| 1234 | No exposure    | route shall be evaluated from consideration relative to a contaminant of concern         |  |  |  |  |  |
| 1235 | unless the fol | lowing requirements are met:                                                             |  |  |  |  |  |
| 1227 | umess me for   | lowing requirements are met.                                                             |  |  |  |  |  |
| 1227 | 2)             | The sum of the concentrations of all anomic contentinents of concern shall not           |  |  |  |  |  |
| 1220 | a)             | The sum of the concentrations of an organic contaminants of concern shall not            |  |  |  |  |  |
| 1239 |                | exceed the attenuation capacity of the soft as determined under Section 742.215;         |  |  |  |  |  |
| 1240 | 1 \            |                                                                                          |  |  |  |  |  |
| 1241 | 6)             | The concentrations of any organic contaminants of concern remaining in the soil          |  |  |  |  |  |
| 1242 |                | shall not exceed the soil saturation limit as determined under Section 742.220;          |  |  |  |  |  |
| 1243 | ,              |                                                                                          |  |  |  |  |  |
| 1244 | c)             | Any soil which contains contaminants of concern shall not exhibit any of the             |  |  |  |  |  |
| 1245 |                | characteristics of reactivity for hazardous waste as determined under 35 Ill. Adm.       |  |  |  |  |  |

| 1246 |                    | Code 721.123;                                                                         |
|------|--------------------|---------------------------------------------------------------------------------------|
| 1247 |                    |                                                                                       |
| 1248 | d)                 | Any soil which contains contaminants of concern shall not exhibit a pH less than      |
| 1249 |                    | or equal to 2.0 or greater than or equal to 12.5, as determined by SW-846 Method      |
| 1250 |                    | 9040B: pH Electrometric for soils with 20% or greater aqueous (moisture)              |
| 1251 |                    | content or by SW-846 Method 9045C: Soil pH for soils with less than 20%               |
| 1252 |                    | aqueous (moisture) content as incorporated by reference in Section 742.210;           |
| 1253 |                    |                                                                                       |
| 1254 | e)                 | Any soil which contains contaminants of concern in the following list of inorganic    |
| 1255 |                    | chemicals or their salts shall not exhibit any of the characteristics of toxicity for |
| 1256 |                    | hazardous waste as determined by 35 Ill. Adm. Code 721.124: arsenic, barium,          |
| 1257 |                    | cadmium, chromium, lead, mercury, selenium or silver; and                             |
| 1258 |                    |                                                                                       |
| 1259 | f)                 | If contaminants of concern include polychlorinated biphenyls (PCBs), the              |
| 1260 |                    | concentration of any PCBs in the soil shall not exceed 50 parts per million as        |
| 1261 |                    | determined by SW-846 Methods: and-                                                    |
| 1262 |                    |                                                                                       |
| 1263 | <u>g)</u>          | The concentration of any contaminant of concern in soil gas shall not exceed 10%      |
| 1264 |                    | of its Lower Explosive Limit (LEL) as measured by a hand held combustible gas         |
| 1265 |                    | indicator that has been calibrated to manufacturer specifications.                    |
| 1266 |                    |                                                                                       |
| 1267 | (Sour              | ce: Amended at 36 Ill. Reg, effective)                                                |
| 1268 |                    |                                                                                       |
| 1269 | Section 742.3      | 310 <u>Outdoor</u> Inhalation Exposure Route                                          |
| 1270 |                    |                                                                                       |
| 1271 | The <u>outdoor</u> | inhalation exposure route may be excluded from consideration if:                      |
| 1272 |                    |                                                                                       |
| 1273 | <u>a)</u>          | The requirements in subsection $(a)(1)$ or $(a)(2)$ are met:                          |
| 1274 |                    |                                                                                       |
| 1275 |                    | 1) An approved engineered barrier is in place that meets the requirements of          |
| 1276 |                    | <u>Subpart K; or</u>                                                                  |
| 1277 |                    |                                                                                       |
| 1278 |                    | 2) The only contaminants of concern are benzene, toluene, ethylbenzene, and           |
| 1279 |                    | total xylenes, and a demonstration of active biodegradation has been made             |
| 1280 |                    | tor benzene, toluene, ethylbenzene, and total xylenes such that no outdoor            |
| 1281 |                    | inhalation exposure will occur. This demonstration shall be submitted to              |
| 1282 |                    | the Agency for review and approval;                                                   |
| 1283 |                    |                                                                                       |
| 1284 | <u>b)</u> a)       | The requirements of Sections 742.300 and 742.305 are met;                             |
| 1285 |                    |                                                                                       |
| 1286 | <del>b)</del>      | An approved engineered barrier is in place that meets the requirements of Subpart     |
| 1287 |                    | <del>K;</del>                                                                         |
| 1288 |                    |                                                                                       |

| 1289          | c)                   | Safety precautions for the construction worker are taken if the Tier 1 construction |               |                                                                      |  |  |
|---------------|----------------------|-------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------|--|--|
| 1290          |                      | WUIKC                                                                               | 1 Temet       | haron objectives are exceeded, and                                   |  |  |
| 1292          | (b                   | An institutional control in accordance with Subpart I will be placed on the         |               |                                                                      |  |  |
| 1293          | a)                   | an institutional control, in accordance with Subpart J, will be placed on the       |               |                                                                      |  |  |
| 1294          |                      | proper                                                                              |               |                                                                      |  |  |
| 1295          | (Sour                | ce: Am                                                                              | ended a       | tt 36 Ill. Reg. effective )                                          |  |  |
| 1296          | X                    |                                                                                     |               | <u> </u>                                                             |  |  |
| 1297          | Section 742.3        | <u>312 Ind</u>                                                                      | loor In       | halation Exposure Route                                              |  |  |
| 1298          |                      |                                                                                     |               |                                                                      |  |  |
| 12 <b>9</b> 9 | <u>The indoor in</u> | <u>halation</u>                                                                     | n expos       | ure route may be excluded from consideration if:                     |  |  |
| 1300          |                      |                                                                                     |               |                                                                      |  |  |
| 1301          | <u>a)</u>            | None (                                                                              | of the c      | ontaminants of concern are listed on Appendix A, Table J and none    |  |  |
| 1302          |                      | <u>of the</u>                                                                       | contam        | inants of concern are volatile chemicals, as defined in Section      |  |  |
| 1303          |                      | <u>742.20</u>                                                                       | <u>)0; or</u> |                                                                      |  |  |
| 1304          |                      |                                                                                     |               |                                                                      |  |  |
| 1305          | <u>b)</u>            | <u>The re</u>                                                                       | quirem        | ents in subsections (b)(1)(A), (B) or (C) and (b)(2) and (b)(3) are  |  |  |
| 1306          |                      | <u>met:</u>                                                                         |               |                                                                      |  |  |
| 1307          |                      |                                                                                     |               |                                                                      |  |  |
| 1308          |                      | <u>1)</u>                                                                           | Exclu         | sion options when the contaminants of concern are volatile           |  |  |
| 1309          |                      |                                                                                     | <u>chemi</u>  | <u>cals:</u>                                                         |  |  |
| 1310          |                      |                                                                                     |               |                                                                      |  |  |
| 1311          |                      |                                                                                     | <u>A)</u>     | No building or man-made pathway exists or will be placed above       |  |  |
| 1312          |                      |                                                                                     |               | the contaminated soil gas or groundwater; or                         |  |  |
| 1313          |                      |                                                                                     |               |                                                                      |  |  |
| 1314          |                      |                                                                                     | <u>B)</u>     | An approved building control technology is in place or will be       |  |  |
| 1315          |                      |                                                                                     |               | placed that meets the requirements of Subpart L; or                  |  |  |
| 1316          |                      |                                                                                     |               |                                                                      |  |  |
| 1317          |                      |                                                                                     | <u>C)</u>     | If the contaminants of concern are benzene, toluene, ethylbenzene,   |  |  |
| 1318          |                      |                                                                                     |               | and total xylenes only, a demonstration of active biodegradation     |  |  |
| 1319          |                      |                                                                                     |               | has been made for benzene, toluene, ethylbenzene, and total          |  |  |
| 1320          |                      |                                                                                     |               | xylenes such that no indoor inhalation exposure will occur. This     |  |  |
| 1321          |                      |                                                                                     |               | demonstration shall be submitted to the Agency for review and        |  |  |
| 1322          |                      |                                                                                     |               | approval;                                                            |  |  |
| 1323          |                      |                                                                                     |               |                                                                      |  |  |
| 1324          |                      | 2)                                                                                  | The re        | equirements of Sections 742.300 and 742.305 are met; and             |  |  |
| 1325          |                      | ,                                                                                   |               |                                                                      |  |  |
| 1326          |                      | 3)                                                                                  | An ins        | stitutional control, in accordance with Subpart J, will be placed on |  |  |
| 1327          |                      |                                                                                     | the pro       | operty.                                                              |  |  |
| 1328          |                      |                                                                                     |               |                                                                      |  |  |
| 1329          | (Sourd               | ce: Add                                                                             | ed at 30      | 6 Ill. Reg., effective )                                             |  |  |
| 1330          | <sup>×</sup>         |                                                                                     |               |                                                                      |  |  |
| 1331          |                      | SU                                                                                  | UBPAR         | T D: DETERMINING AREA BACKGROUND                                     |  |  |
|               |                      |                                                                                     |               |                                                                      |  |  |
| 1332<br>1333 | Section 742 | 2.405 De | termina  | ation of Area Background for Soil                                            |
|--------------|-------------|----------|----------|------------------------------------------------------------------------------|
| 1334         |             |          |          |                                                                              |
| 1335         | a)          | Soil s   | ampling  | results shall be obtained for purposes of determining area                   |
| 1336         |             | backg    | round le | evels in accordance with the following procedures:                           |
| 1337         |             |          |          |                                                                              |
| 1338         |             | 1)       | For vo   | platile <u>chemicalsorganic contaminants</u> , sample results shall be based |
| 1339         |             |          | on dis   | crete samples;                                                               |
| 1340         |             |          |          |                                                                              |
| 1341         |             | 2)       | Unles    | s an alternative method is approved by the Agency, for contaminants          |
| 1342         |             | ,        | other    | than volatile <u>chemicalsorganic contaminants</u> , sample results shall be |
| 1343         |             |          | based    | on discrete samples or composite samples. If a person elects to use          |
| 1344         |             |          | compo    | osite samples, each 0.5 acre of the area to be sampled shall be              |
| 1345         |             |          | divide   | ed into quadrants and 5 aliquots of equal volume per quadrant shall          |
| 1346         |             |          | be cor   | nposited into 1 sample;                                                      |
| 1347         |             |          |          |                                                                              |
| 1348         |             | 3)       | Sampl    | les shall be collected from similar depths and soil types, which shall       |
| 1349         |             | ,        | be cor   | sistent with the depths and soil types in which maximum levels of            |
| 1350         |             |          | contar   | ninants are found in the areas of known or suspected releases; and           |
| 1351         |             |          |          | * *                                                                          |
| 1352         |             | 4)       | Sampl    | les shall be collected from areas of the site or adjacent to the site that   |
| 1353         |             |          | are un   | affected by known or suspected releases at or from the site. If the          |
| 1354         |             |          | sampl    | e results show an impact from releases at or from the site, then the         |
| 1355         |             |          | sampl    | e results shall not be included in determining area background levels        |
| 1356         |             |          | under    | this Part.                                                                   |
| 1357         |             |          |          |                                                                              |
| 1358         | b)          | Area l   | oackgro  | und shall be determined according to one of the following                    |
| 1359         |             | approa   | aches:   |                                                                              |
| 1360         |             |          |          |                                                                              |
| 1361         |             | 1)       | Statev   | vide Area Background Approach:                                               |
| 1362         |             |          |          |                                                                              |
| 1363         |             |          | A)       | The concentrations of inorganic chemicals in background soils                |
| 1364         |             |          |          | listed in Appendix A, Table G may be used as the upper limit of              |
| 1365         |             |          |          | the area background concentration for the site. The first column to          |
| 1366         |             |          |          | the right of the chemical name presents inorganic chemicals in               |
| 1367         |             |          |          | background soils for counties within Metropolitan Statistical                |
| 1368         |             |          |          | Areas. Counties within Metropolitan Statistical Areas are                    |
| 1369         |             |          |          | identified in Appendix A, Table G, Footnote a. Sites located in              |
| 1370         |             |          |          | counties outside Metropolitan Statistical Areas shall use the                |
| 1371         |             |          |          | concentrations of inorganic chemicals in background soils shown              |
| 1372         |             |          |          | in the second column to the right of the chemical name.                      |
| 1373         |             |          |          | -                                                                            |
| 1374         |             |          | B)       | Soil area background concentrations determined according to this             |

| 1375<br>1376 |               | statewide area background approach shall be used as provided in Section 742.415(b) of this Part. For each parameter whose |
|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------|
| 1377         |               | sampling results demonstrate concentrations above those in                                                                |
| 1378         |               | Appendix A. Table G. the person shall develop appropriate soil                                                            |
| 1379         |               | remediation objectives in accordance with this Part or may                                                                |
| 1380         |               | determine area background in accordance with subsection (b)(2) of                                                         |
| 1381         |               | this Section.                                                                                                             |
| 1382         |               |                                                                                                                           |
| 1383         |               | 2) A statistically valid approach for determining area background                                                         |
| 1384         |               | concentrations appropriate for the characteristics of the data set and                                                    |
| 1385         |               | approved by the Agency.                                                                                                   |
| 1386         |               |                                                                                                                           |
| 1387         |               | (Source: Amended at 36 Ill. Reg, effective)                                                                               |
| 1388         |               |                                                                                                                           |
| 1389         |               | SUBPARTE: TIER I EVALUATION                                                                                               |
| 1390         |               |                                                                                                                           |
| 1391         | Section 742.5 | 00 Ther I Evaluation Overview                                                                                             |
| 1392         | ``            |                                                                                                                           |
| 1393         | a)            | A fier I evaluation compares the concentration of each contaminant of concern                                             |
| 1394         |               | detected at a site to the baseline remediation objectives provided in Appendix B,                                         |
| 1395         |               | Tables A, B, C, D, and E, G, H and I. Use of Tier I remediation objectives                                                |
| 1396         |               | requires only limited site-specific information: concentrations of contaminants of                                        |
| 1397         |               | concern, groundwater classification, land use classification, and, if appropriate,                                        |
| 1398         |               | soil pH. (See Appendix B, Illustration A.)                                                                                |
| 1399         | 1 \           |                                                                                                                           |
| 1400         | b)            | Although Lier I allows for differentiation between residential and                                                        |
| 1401         |               | industrial/commercial property use of a site, an institutional control under Subpart                                      |
| 1402         |               | J is required where remediation objectives are based on an industrial/commercial                                          |
| 1403         |               | property use.                                                                                                             |
| 1404         | ς.            |                                                                                                                           |
| 1405         | c)            | Any given exposure route is not a concern if the concentration of each                                                    |
| 1406         |               | contaminant of concern detected at the site is below the Tier I value of that given                                       |
| 1407         |               | route. In such a case, no further evaluation of that route is necessary.                                                  |
| 1408         | (6            |                                                                                                                           |
| 1409         | (Sourc        | e: Amended at 36 III. Reg, effective)                                                                                     |
| 1410         |               |                                                                                                                           |
| 1411<br>1412 | Section 742.5 | 05 Tier I Soil, Soil Gas and Groundwater Remediation Objectives                                                           |
| 1413         | a)            | Soil                                                                                                                      |
| 1414         | ,             |                                                                                                                           |
| 1415         |               | 1) <u>Outdoor Inhalation Exposure Route</u>                                                                               |
| 1416         |               | · *                                                                                                                       |
| 1417         |               | A) The Tier 1 soil remediation objectives for this exposure route                                                         |

| 1418<br>1419 |           | based upon residential property use are listed in Appendix B, Table A. |
|--------------|-----------|------------------------------------------------------------------------|
| 1420         |           |                                                                        |
| 1421         | B)        | The Tier 1 soil remediation objectives for this exposure route         |
| 1422         |           | based upon industrial/commercial property use are listed in            |
| 1423         |           | Appendix B, Table B. Soil remediation objective determinations         |
| 1424         |           | relying on this table require use of institutional controls in         |
| 1425         |           | accordance with Subpart J.                                             |
| 1426         |           |                                                                        |
| 1427         | <u>C)</u> | For this exposure route, it is acceptable to determine compliance      |
| 1428         |           | by meeting either the soil or soil gas remediation objectives.         |
| 1429         |           |                                                                        |
| 1430 2)      | Ingesti   | on Exposure Route                                                      |
| 1431         |           |                                                                        |
| 1432         | A)        | The Tier 1 soil remediation objectives for this exposure route         |
| 1433         |           | based upon residential property use are listed in Appendix B, Table    |
| 1434         |           | А.                                                                     |
| 1435         |           |                                                                        |
| 1436         | B)        | The Tier 1 soil remediation objectives for this exposure route         |
| 1437         |           | based upon industrial/commercial property use are listed in            |
| 1438         |           | Appendix B, Table B. Soil remediation objective determinations         |
| 1439         |           | relying on this table require use of institutional controls in         |
| 1440         |           | accordance with Subpart J.                                             |
| 1441         |           | ~                                                                      |
| 1442 3)      | Soil Co   | omponent of the Groundwater Ingestion Route                            |
| 1443         |           |                                                                        |
| 1444         | A)        | The Tier 1 soil remediation objectives for this exposure route         |
| 1445         |           | based upon residential property use are listed in Appendix B, Table    |
| 1446         |           | A.                                                                     |
| 1447         |           |                                                                        |
| 1448         | B)        | The Tier 1 soil remediation objectives for this exposure route         |
| 1449         | ,         | based upon industrial/commercial property use are listed in            |
| 1450         |           | Appendix B, Table B.                                                   |
| 1451         |           |                                                                        |
| 1452         | C)        | The pH-dependent Tier 1 soil remediation objectives for identified     |
| 1453         | ,         | ionizable organics or inorganics for the soil component of the         |
| 1454         |           | groundwater ingestion exposure route (based on the total amount        |
| 1455         |           | of contaminants present in the soil sample results and groundwater     |
| 1456         |           | classification) are provided in Appendix B. Tables C and D.            |
| 1457         |           |                                                                        |
| 1458         | D)        | Values used to calculate the Tier 1 soil remediation objectives for    |
| 1459         | ,         | this exposure route are listed in Appendix B. Table F.                 |
| 1460         |           |                                                                        |

| 1461<br>1462 |           | 4)         | Evalu<br>under | nation of the dermal contact with soil exposure route is not required<br>Tier 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-----------|------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1463         |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1464         | <u>b)</u> | Soil (     | Gas            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1465         |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1466         |           | 1)         | Outdo          | oor Inhalation Exposure Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1467         |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1468         |           |            | A)             | The Tier 1 soil gas remediation objectives for this exposure route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1469         |           |            | <i>t_</i>      | based upon residential property use are listed in Appendix B. Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1470         |           |            |                | (I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1471         |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1472         |           |            | B)             | The Tier 1 soil gas remediation objectives for this exposure route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1473         |           |            | <i>=</i> 7     | based upon industrial/commercial property use, including the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1474         |           |            |                | construction worker population are listed in Appendix B Table G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1475         |           |            |                | Soil gas remediation objective determinations relying on an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1476         |           |            |                | industrial/commercial scenario require use of institutional controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1477         |           |            |                | in accordance with Subpart I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1478         |           |            |                | in accordance with Suspan 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1479         |           |            | $(\mathbf{C})$ | For this exposure route, it is acceptable to determine compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1480         |           |            | <u>_</u>       | by meeting either the soil or soil gas remediation objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1481         |           |            |                | by meeting entire the son of son gas remediation objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1482         |           | 2)         | Indoo          | r Inhalation Exposure Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1483         |           | <u>4</u> ] | muoo           | T mildidion Exposure Rodde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1484         |           |            | A)             | The Tier 1 soil gas remediation objectives for this exposure route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1485         |           |            | <u>1 1 1</u>   | are listed in Appendix B. Tables H and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1486         |           |            |                | are instea in Appendix D, Tables II and I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1480         |           |            | B)             | The Tier 1 soil gas remediation objectives for this exposure route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1487         |           |            | <u>D)</u>      | are based on a default water filled soil porosity value of 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1488         |           |            |                | are based on a default water-fined son porosity value of 0.15<br>cm <sup>3</sup> /cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1489         |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1490         |           |            | ()             | Annandix P. Table U shall be used when soil or groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1491         |           |            | $\Box$         | Appendix B, Table II shall be used when soll of groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1492         |           |            |                | evicting or notontial building or man made nothway. In this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1493         |           |            |                | existing of potential building of mail-made pathway. In this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1494         |           |            |                | scenario, the mode of containmant transport is both diffusion and advice the $\Omega$ - value at $82.22$ cm <sup>3</sup> /ccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1495         |           |            |                | advection, which sets the $Q_{\text{soil}}$ value at 85.55 cm/sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1490         |           |            | D)             | Annordiy D. Table I shall be used when soil and group dwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 147/<br>1400 |           |            | ע              | Appendix D, Table I shall be used when soll and groundwaler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1470         |           |            |                | <u>containmation are more than 5 reet, vertically and norizontally,</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1499         |           |            |                | this soon are the mode of containing or man-made pathway. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1500         |           |            |                | this scenario, the mode of contaminant transport is diffusion only,<br>which gets the $\Omega$ - scalar at $0.0 \text{ s}^{-3}/(1 \text{ s}^{-1}/2  $ |
| 1501         |           |            |                | which sets the Q <sub>soil</sub> value at 0.0 cm <sup>-</sup> /sec. Soil gas remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1502         |           |            |                | objective determinations relying on this table require use of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1003         |           |            |                | institutional controls in accordance with Subpart J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 1504 |                  |       |                    |                                                                                                                          |
|------|------------------|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1505 |                  |       | E)                 | To determine whether the $Q_{soil}$ value can be set at 0.0 cm <sup>3</sup> /sec, the                                    |
| 1506 |                  |       | ·                  | site evaluator shall demonstrate that soil and groundwater within 5                                                      |
| 1507 |                  |       |                    | feet, vertically and horizontally, of an existing or potential building                                                  |
| 1508 |                  |       |                    | or man-made pathway meet the Tier 1 remediation objectives for                                                           |
| 1509 |                  |       |                    | residential property listed in Appendix B. Table A. and the Tier 1                                                       |
| 1510 |                  |       |                    | remediation objectives for Class I groundwater listed in Appendix                                                        |
| 1511 |                  |       |                    | B. Table E. respectively.                                                                                                |
| 1512 |                  |       |                    |                                                                                                                          |
| 1513 | c) <del>b)</del> | Groun | dwater             |                                                                                                                          |
| 1514 | <u> </u>         | 010   |                    |                                                                                                                          |
| 1515 |                  | 1)    | The T <sup>a</sup> | ier 1 groundwater remediation objectives for the groundwater                                                             |
| 1516 |                  | -)    | compo              | opent of the groundwater ingestion route are listed in Appendix B                                                        |
| 1517 |                  |       | Table              | E                                                                                                                        |
| 1518 |                  |       | 1 4010             | ، تـــ                                                                                                                   |
| 1519 |                  | 2)    | The Ti             | ier 1 groundwater remediation objectives for this exposure route are                                                     |
| 1520 |                  | 2)    | given              | for Class L and Class II groundwaters, respectively                                                                      |
| 1520 |                  |       | given              | for Class I and Class II ground waters, respectively.                                                                    |
| 1522 |                  | 3)    | The ex             | valuation of 35 III Adm. Code 620 615 regarding mixtures of                                                              |
| 1522 |                  | 5)    | similar            | r-acting chemicals shall be considered satisfied for Class I                                                             |
| 1524 |                  |       | around             | dwater at the point of human exposure if:                                                                                |
| 1525 |                  |       | ground             | iwater at the point of numan exposure ii.                                                                                |
| 1526 |                  |       | ۸)                 | No more than one similar acting noncorreine genie chemical of                                                            |
| 1527 |                  |       | Л)                 | listed in Annendix A. Table E is detected in the groundwater at the                                                      |
| 1527 |                  |       |                    | site: and                                                                                                                |
| 1520 |                  |       |                    | Site, allu                                                                                                               |
| 1529 |                  |       | D)                 | No consinguanti contaminant of concern on listed in Amendia A                                                            |
| 1530 |                  |       | Б)                 | Toble Lie detected in any groundwater commute against with the                                                           |
| 1531 |                  |       |                    | site using analytical procedures canable of achieving either the 1                                                       |
| 1532 |                  |       |                    | site, using analytical procedures capable of achieving either the 1                                                      |
| 1555 |                  |       |                    | III 1,000,000 calleer fisk concentration of the ADL, whichever is                                                        |
| 1534 |                  |       |                    | greater.                                                                                                                 |
| 1555 |                  | 4)    | Tf the             | and divide a function $(a)(2)(b)(2)$ of this first one wat wat the                                                       |
| 1530 |                  | 4)    | II the Class       | conditions of subsection $(\underline{C})(\underline{S})(\underline{C})(\underline{S})$ of this Section are not met, the |
| 1537 |                  |       | Class J            | I groundwater remediation objectives set forth in Appendix B, Table                                                      |
| 1538 |                  |       |                    | The corrected for the cumulative effect of mixtures of similar-acting                                                    |
| 1539 |                  |       | cnemic             | cals using the following methodologies:                                                                                  |
| 1540 |                  |       | <b>A</b> )         |                                                                                                                          |
| 1541 |                  |       | A)                 | For noncarcinogenic chemicals, the methodologies set forth at                                                            |
| 1542 |                  |       |                    | Section 742.805(c) or Section 742.915(h) shall be used; and                                                              |
| 1543 |                  |       |                    |                                                                                                                          |
| 1544 |                  |       | В)                 | For carcinogenic chemicals, the methodologies set forth at Section                                                       |
| 1545 |                  |       |                    | (42.805(d)  or Section  (42.915(h)  shall be used.)                                                                      |
| 1546 |                  |       |                    |                                                                                                                          |

: \* F

| 1547 | <u>5)</u>             | For the groundwater component of the indoor inhalation exposure route,                      |
|------|-----------------------|---------------------------------------------------------------------------------------------|
| 1548 |                       | the Tier 1 groundwater remediation objectives are listed in Appendix B.                     |
| 1549 |                       | Tables H and I.                                                                             |
| 1550 |                       |                                                                                             |
| 1551 |                       | <u>A)</u> The Tier 1 groundwater remediation objectives for this exposure                   |
| 1552 |                       | route are based on a default water-filled soil porosity value of 0.15                       |
| 1553 |                       | $\mathrm{cm}^{3}/\mathrm{cm}^{3}$ .                                                         |
| 1554 |                       |                                                                                             |
| 1555 |                       | <u>B)</u> Appendix B, Table H shall be used when soil or groundwater                        |
| 1556 |                       | contamination is within 5 feet, vertically and horizontally, of an                          |
| 1557 |                       | existing or potential building or man-made pathway. In this                                 |
| 1558 |                       | scenario, the mode of contaminant transport is both diffusion and                           |
| 1559 |                       | advection, which sets the $Q_{soil}$ value at 83.33 cm <sup>3</sup> /sec.                   |
| 1560 |                       |                                                                                             |
| 1561 |                       | C) Appendix B. Table I shall be used when soil and groundwater                              |
| 1562 |                       | contamination are more than 5 feet, vertically and horizontally.                            |
| 1563 |                       | from an existing or potential building or man-made pathway. In                              |
| 1564 |                       | this scenario, the mode of contaminant transport is diffusion only.                         |
| 1565 |                       | which sets the $O_{\text{soil}}$ value at 0.0 cm <sup>3</sup> /sec. Groundwater remediation |
| 1566 |                       | objective determinations relying on this table require use of                               |
| 1567 |                       | institutional controls in accordance with Subpart J.                                        |
| 1568 |                       |                                                                                             |
| 1569 |                       | D) To determine whether the $O_{coll}$ value can be set at 0.0 cm <sup>3</sup> /sec. the    |
| 1570 |                       | site evaluator shall demonstrate that soil and groundwater within 5                         |
| 1571 |                       | feet, vertically and horizontally of an existing or potential building                      |
| 1572 |                       | or man-made nathway meet the Tier 1 remediation objectives for                              |
| 1573 |                       | residential property listed in Appendix B. Table A. and the Tier 1                          |
| 1574 |                       | remediation objectives for Class I groundwater listed in Appendix                           |
| 1575 |                       | B Table E respectively                                                                      |
| 1576 |                       |                                                                                             |
| 1577 | (Source: Ame          | nded at 36 III Reg effective )                                                              |
| 1578 | (Source: Third        |                                                                                             |
| 1579 | Section 742 510 Tier  | 1 Remediation Objectives Tables for the Ingestion Outdoor                                   |
| 1580 | Inhalation and Soil ( | amonent of the Groundwater Ingestion Exposure Routes                                        |
| 1581 | milation and Son (    | somponent of the Oroundwater ingestion Exposure Routes                                      |
| 1582 | a) Soil re-           | nediation objectives are listed in Annendix B. Tables A. B. C. and D.                       |
| 1583 |                       | inculation objectives are listed in Appendix D, Tables A, D, C and D.                       |
| 158/ | 1)                    | Annendix B. Table A is based upon residential property use                                  |
| 1585 | 1)                    | rependende D, rabie A is based upon residential property use.                               |
| 1586 |                       | $\Lambda$ ) The first column to the right of the shamical name lists sail                   |
| 1587 |                       | remediation objectives for the soil incestion expensive route                               |
| 1500 |                       | remediation objectives for the soft ingestion exposure route.                               |
| 1500 |                       | D) The second column lists the soil remediation objections for the                          |
| 1309 |                       | b) The second column lists the soll remediation objectives for the                          |

| 1391       C)       The third and fourth columns list soil remediation objectives for the soil component of the groundwater ingestion exposure route for the respective classes of groundwater:         1594       i)       Class I groundwater; and         1595       ii)       Class II groundwater.         1596       i)       Class II groundwater.         1597       iii)       Class II groundwater.         1599       D)       The final column lists the Acceptable Detection Limit (ADL), only whenwhere applicable.         1600       D)       The first columns to the right of the chemical name list the soil remediation objectives for the soil ingestion exposure route based on two receptor populations:         1606       i)       Industrial/commercial; and         1611       ii)       Construction worker.         1612       B)       The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:         1613       B)       The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:         1616       ii)       Industrial/commercial; and         1614       iii)       Construction worker.         1615       iii)       Industrial/commercial; and         1616       ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1593       the soil component of the groundwater ingestion exposure route for         1594       the respective classes of groundwater:         1595       i)       Class I groundwater; and         1597       ii)       Class II groundwater.         1599       ii)       Class II groundwater.         1599       ii)       Class II groundwater.         1600       D)       The final column lists the Acceptable Detection Limit (ADL), only<br>whenwhere applicable.         1602       D)       The final column lists the Acceptable Detection Limit (ADL), only<br>whenwhere applicable.         1602       Appendix B, Table B is based upon industrial/commercial property use.         1604       A)       The first and third columns to the right of the chemical name list<br>the soil remediation objectives for the soil ingestion exposure route<br>based on two receptor populations:         1605       A)       Industrial/commercial; and         1610       ii)       Construction worker.         1612       B)       The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:         1616       ii)       Industrial/commercial; and         1617       i)       Industrial/commercial; and         1618       ii)       Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1594       the respective classes of groundwater:         1595       i)       Class I groundwater; and         1597       ii)       Class II groundwater.         1598       ii)       Class II groundwater.         1599       ii)       Class II groundwater.         1600       D)       The final column lists the Acceptable Detection Limit (ADL), only whenwhere applicable.         1602       iii)       Class II groundwater.         1602       iii)       Appendix B, Table B is based upon industrial/commercial property use.         1604       A)       The first and third columns to the right of the chemical name list the soil remediation objectives for the soil ingestion exposure route based on two receptor populations:         1608       i)       Industrial/commercial; and         1611       ii)       Construction worker.         1612       B)       The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:         1613       B)       The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:         1616       ii)       Industrial/commercial; and         1617       i)       Industrial/commercial; and         1618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1595       i) Class I groundwater; and         1597       ii) Class II groundwater.         1599       iii) Class II groundwater.         1599       iii) Class II groundwater.         1600       D) The final column lists the Acceptable Detection Limit (ADL), only         1601       whenwhere applicable.         1602       2) Appendix B, Table B is based upon industrial/commercial property use.         1604       1         1605       A) The first and third columns to the right of the chemical name list         1606       the soil remediation objectives for the soil ingestion exposure route         1607       based on two receptor populations:         1608       ii) Industrial/commercial; and         1610       ii) Construction worker.         1612       B) The second and fourth columns to the right of the chemical name         1614       iii) Construction worker.         1615       route based on two receptor populations:         1616       iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>i) Class I groundwater; and</li> <li>ii) Class II groundwater.</li> <li>iii) Construction worker.</li> <li>iii) Construction worker.</li> <li>iii) Industrial/commercial; and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>1597</li> <li>1598</li> <li>1600</li> <li>1600</li> <li>1601</li> <li>1602</li> <li>1602</li> <li>1603</li> <li>1604</li> <li>1605</li> <li>1605</li> <li>1606</li> <li>1605</li> <li>1606</li> <li>1605</li> <li>1606</li> <li>1606</li> <li>1607</li> <li>1608</li> <li>1608</li> <li>1608</li> <li>1610</li> <li>1611</li> <li>1612</li> <li>1612</li> <li>1613</li> <li>1614</li> <li>1615</li> <li>1615</li> <li>1616</li> <li>1616</li> <li>1617</li> <li>1618</li> <li>1619</li> <li>161</li> <li>1619</li> <li>161</li> <li>161</li> <li>1610</li> <li>1611</li> <li>1611</li> <li>1612</li> <li>1612</li> <li>1614</li> <li>1615</li> <li>1616</li> <li>1616</li> <li>1617</li> <li>1618</li> <li>1619</li> <li>1610</li> <li>1611</li> <li>1611</li> <li>1612</li> <li>1612</li> <li>1614</li> <li>1615</li> <li>1614</li> <li>1615</li> <li>1616</li> <li>1617</li> <li>1614</li> <li>1619</li> <li>1610</li> <li>1611</li> <li>1611</li> <li>1612</li> <li>1612</li> <li>1614</li> <li>1615</li> <li>1614</li> <li>1615</li> <li>1616</li> <li>1616</li> <li>1617</li> <li>1614</li> <li>1618</li> <li>1619</li> <li>161</li> <li>1614</li> <li>1615</li> <li>1614</li> <li>1615</li> <li>1614</li> <li>1615</li> <li>1615</li> <li>1616</li> <li>1616</li> <li>1617</li> <li>1618</li> <li>1618</li> <li>1619</li> <li>1610</li> <li>1611</li> <li>1612</li> <li>1612</li> <li>1614</li> <li>1615</li> <li>1615</li> <li>1614</li> <li>1615</li> <li>1615</li> <li>1615</li> <li>1616</li> <li>1616</li> <li>1617</li> <li>1618</li> &lt;</ul> |
| <ul> <li>1598 <ol> <li>Class II groundwater.</li> </ol> </li> <li>1599 <ol> <li>The final column lists the Acceptable Detection Limit (ADL), only whenwhere applicable.</li> </ol> </li> <li>1602 <ol> <li>Appendix B, Table B is based upon industrial/commercial property use.</li> </ol> </li> <li>1604 <ol> <li>The first and third columns to the right of the chemical name list the soil remediation objectives for the soil ingestion exposure route based on two receptor populations:</li> <li>1608 <ol> <li>Industrial/commercial; and</li> </ol> </li> <li>1612 <ol> <li>The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:</li> </ol> </li> <li>1613 <ol> <li>The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:</li> </ol> </li> </ol></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1599D)The final column lists the Acceptable Detection Limit (ADL), only<br>whenwhere applicable.1601whenwhere applicable.1602160316032)Appendix B, Table B is based upon industrial/commercial property use.1604A)The first and third columns to the right of the chemical name list<br>the soil remediation objectives for the soil ingestion exposure route<br>based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.1612B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1616i)Industrial/commercial; and1617i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1600D)The final column lists the Acceptable Detection Limit (ADL), only<br>whenwhere applicable.1601whenwhere applicable.1602160316032)Appendix B, Table B is based upon industrial/commercial property use.160416051605A)The first and third columns to the right of the chemical name list<br>the soil remediation objectives for the soil ingestion exposure route<br>based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.1612B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1616i)Industrial/commercial; and1617i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1601       whenwhere applicable.         1602       2)       Appendix B, Table B is based upon industrial/commercial property use.         1604       1605       A)       The first and third columns to the right of the chemical name list the soil remediation objectives for the soil ingestion exposure route based on two receptor populations:         1608       i)       Industrial/commercial; and         1610       ii)       Construction worker.         1612       B)       The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:         1613       B)       The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:         1616       i)       Industrial/commercial; and         1616       ii)       Industrial/commercial; and         1618       ii)       Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 160216032)Appendix B, Table B is based upon industrial/commercial property use.16041605A)1605A)The first and third columns to the right of the chemical name list<br>the soil remediation objectives for the soil ingestion exposure route<br>based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.1612B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1616i)Industrial/commercial; and1617i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16032)Appendix B, Table B is based upon industrial/commercial property use.16041605A)The first and third columns to the right of the chemical name list<br>the soil remediation objectives for the soil ingestion exposure route<br>based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.1612B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1613B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1616i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16041605A)The first and third columns to the right of the chemical name list1606the soil remediation objectives for the soil ingestion exposure route1607based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.1612B)The second and fourth columns to the right of the chemical name1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)Industrial/commercial; and1618ii)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1605A)The first and third columns to the right of the chemical name list<br>the soil remediation objectives for the soil ingestion exposure route<br>based on two receptor populations:1607i)Industrial/commercial; and1608ii)Construction worker.1610iii)Construction worker.1612B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1613B)The second and fourth columns to the right of the chemical name<br>list the soil remediation objectives for the inhalation exposure<br>route based on two receptor populations:1616ii)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1606the soil remediation objectives for the soil ingestion exposure route1607based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.16121613B)The second and fourth columns to the right of the chemical name1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)Industrial/commercial; and1617i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1607based on two receptor populations:1608i)Industrial/commercial; and1610ii)Construction worker.16121613B)The second and fourth columns to the right of the chemical name1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16081609i)Industrial/commercial; and1610ii)Construction worker.1612iii)Construction worker.1613B)The second and fourth columns to the right of the chemical name1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>i) Industrial/commercial; and</li> <li>ii) Construction worker.</li> <li>iii) Construction worker.</li> <li>iii) Construction worker.</li> <li>iii) The second and fourth columns to the right of the chemical name list the soil remediation objectives for the inhalation exposure route based on two receptor populations:</li> <li>ii) Industrial/commercial; and</li> <li>iii) Construction worker.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16101611161216121613161416141615161516161616161716181619i)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>1611 <ol> <li>ii) Construction worker.</li> </ol> </li> <li>1612 <ol> <li>1613</li> <li>1613</li> <li>1614</li> <li>1615</li> <li>1616</li> <li>1617</li> <li>1618</li> <li>1619</li> <li>ii) Construction worker.</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16121613B)The second and fourth columns to the right of the chemical name1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)1617i)1618ii)1619ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1613B)The second and fourth columns to the right of the chemical name1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)1617i)1618ii)1619ii)1619Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1614list the soil remediation objectives for the inhalation exposure1615route based on two receptor populations:1616i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1615route based on two receptor populations:1616i)1617i)1618ii)1619ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16161617i)16181619ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1617i)Industrial/commercial; and1618ii)Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1618<br>1619 ii) Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1619 11) Construction worker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1621 C) The fifth and sixth columns to the right of the chemical name list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1622 the soil remediation objectives for the soil component of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1623 groundwater ingestion exposure route for two classes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1624 groundwater:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1620 I) Class I groundwater, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1020 $11)$ Class II groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1027<br>1630 D) The final column lists the accontable detection limit (ADI) only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1631 when applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 1633<br>1634 | 3) | Appendix B, Tables C and D set forth pH specific soil remediation objectives for inorganic and ionizing organic chemicals for the soil |
|--------------|----|----------------------------------------------------------------------------------------------------------------------------------------|
| 1635         |    | component of the groundwater ingestion route                                                                                           |
| 1636         |    | component et me ground nuter mgestion route.                                                                                           |
| 1637         |    | A) Table C sets forth remediation objectives based on Class I                                                                          |
| 1638         |    | groundwater and Table D sets forth remediation objectives based                                                                        |
| 1639         |    | on Class II groundwater.                                                                                                               |
| 1640         |    |                                                                                                                                        |
| 1641         |    | B) The first column in Tables C and D lists the chemical names.                                                                        |
| 1642         |    | ,                                                                                                                                      |
| 1643         |    | C) The second through ninth columns to the right of the chemical                                                                       |
| 1644         |    | names list the pH based soil remediation objectives.                                                                                   |
| 1645         |    |                                                                                                                                        |
| 1646         | 4) | For the inorganic chemicals listed in Appendix B. Tables A and B. the soil                                                             |
| 1647         | ,  | component of the groundwater ingestion exposure route shall be evaluated                                                               |
| 1648         |    | using TCLP (SW-846 Method 1311) or SPLP (SW-846 Method 1312).                                                                          |
| 1649         |    | incorporated by reference at Section 742.210 unless a person chooses to                                                                |
| 1650         |    | evaluate the soil component on the basis of the total amount of                                                                        |
| 1651         |    | contaminant in a soil sample result in accordance with subsection (a)(5) of                                                            |
| 1652         |    | this Section.                                                                                                                          |
| 1653         |    |                                                                                                                                        |
| 1654         | 5) | For those inorganic and ionizing organic chemicals listed in Appendix B,                                                               |
| 1655         |    | Tables C and D, if a person elects to evaluate the soil component of the                                                               |
| 1656         |    | groundwater ingestion exposure route based on the total amount of                                                                      |
| 1657         |    | contaminant in a soil sample result (rather than TCLP or SPLP analysis),                                                               |
| 1658         |    | the person shall determine the soil pH at the site and then select the                                                                 |
| 1659         |    | appropriate soil remediation objectives based on Class I and Class II                                                                  |
| 1660         |    | groundwaters from Tables C and D, respectively. If the soil pH is less                                                                 |
| 1661         |    | than 4.5 or greater than 9.0, then Tables C and D cannot be used.                                                                      |
| 1662         |    |                                                                                                                                        |
| 1663         | 6) | Unless one or more exposure routes are excluded from consideration                                                                     |
| 1664         |    | under Subpart C, the most stringent soil remediation objective of the                                                                  |
| 1665         |    | exposure routes (i.e., soil ingestion exposure route, outdoor inhalation                                                               |
| 1666         |    | exposure route, and soil component of the groundwater ingestion exposure                                                               |
| 1667         |    | route) shall be compared to the concentrations of soil contaminants of                                                                 |
| 1668         |    | concern measured at the site. When using Appendix B, Table B to select                                                                 |
| 1669         |    | soil remediation objectives for the ingestion exposure route and outdoor                                                               |
| 1670         |    | inhalation exposure routes route, the remediation objective shall be the                                                               |
| 1671         |    | more stringent soil remediation objective of the industrial/commercial                                                                 |
| 1672         |    | populations and construction worker populations.                                                                                       |
| 1673         |    |                                                                                                                                        |
| 1674         | 7) | Confirmation sample results may be averaged or soil samples may be                                                                     |
| 1675         |    | composited in accordance with Section 742.225.                                                                                         |

| 1676 |              |        |                                                                               |
|------|--------------|--------|-------------------------------------------------------------------------------|
| 1677 |              | 8)     | If a soil remediation objective for a chemical is less than the ADL, the      |
| 1678 |              | ,      | ADL shall serve as the soil remediation objective.                            |
| 1679 |              |        | 5                                                                             |
| 1680 | b)           | Grou   | ndwater remediation objectives for the groundwater component of the           |
| 1681 | ,            | grour  | ndwater ingestion exposure route are listed in Appendix B, Table E.           |
| 1682 |              | How    | ever, Appendix B, Table E must be corrected for cumulative effect of          |
| 1683 |              | mixtı  | ures of similar-acting noncarcinogenic chemicals as set forth in Section      |
| 1684 |              | 742.5  | 505(cb)(3) and $(c)(4)$ .                                                     |
| 1685 |              |        |                                                                               |
| 1686 |              | 1)     | The first column to the right of the chemical name lists groundwater          |
| 1687 |              | ,      | remediation objectives for Class I groundwater, and the second column         |
| 1688 |              |        | lists the groundwater remediation objectives for Class II groundwater.        |
| 1689 |              |        |                                                                               |
| 1690 |              | 2)     | To use Appendix B, Table E of this Part, the 35 Ill. Adm. Code 620            |
| 1691 |              | ,      | classification for groundwater at the site shall be determined. The           |
| 1692 |              |        | concentrations of groundwater contaminants of concern at the site are         |
| 1693 |              |        | compared to the applicable Tier 1 groundwater remediation objectives for      |
| 1694 |              |        | the groundwater component of the groundwater ingestion exposure route         |
| 1695 |              |        | in Appendix B, Table E.                                                       |
| 1696 |              |        |                                                                               |
| 1697 | c)           | Soil g | gas remediation objectives for the outdoor inhalation exposure route are      |
| 1698 |              | listed | l in Appendix B, Table G.                                                     |
| 1699 |              |        |                                                                               |
| 1700 |              | 1)     | The first column to the right of the chemical name lists the soil gas         |
| 1701 |              |        | remediation objectives for residential populations.                           |
| 1702 |              |        |                                                                               |
| 1703 |              | 2)     | The second and third columns to the right of the chemical names list the      |
| 1704 |              |        | soil gas remediation objectives for the outdoor inhalation exposure route     |
| 1705 |              |        | based on two receptor populations:                                            |
| 1706 |              |        |                                                                               |
| 1707 |              |        | <u>A)</u> <u>Industrial/commercial; and</u>                                   |
| 1708 |              |        |                                                                               |
| 1709 |              |        | B) Construction worker.                                                       |
| 1710 |              |        |                                                                               |
| 1711 | <u>d)</u> e) | For c  | ontaminants of concern not listed in Appendix B, Tables A, B, and E, and G,   |
| 1712 |              | a pers | son may request site-specific remediation objectives from the Agency or       |
| 1713 |              | propo  | ose site-specific remediation objectives in accordance with 35 Ill. Adm. Code |
| 1714 |              | 620, 5 | Subpart I of this Part, or both.                                              |
| 1715 |              | ·      |                                                                               |
| 1716 | (Sour        | ce: An | nended at 36 Ill. Reg. , effective )                                          |
| 1717 | `            |        |                                                                               |

| <ul> <li>1719 Route</li> <li>1720 <ul> <li>a) When the mode of contaminant transport is both diffusion and advection as described in Section 742.505 (i.e., soil or groundwater contamination is within 5 feet of an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table H shall be used.</li> <li>1727 <ol> <li>The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.</li> </ol> </li> <li>1730 <ol> <li>The second column lists the soil gas remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1733 <ol> <li>The third column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1735 <ol> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1736 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1737 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1738 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1739 <ol> <li>When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for industrial/commercial receptors.</li> <li>1738 </li> <li>When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for residential no objectives relying on this table require use of institutional controls in accordance with Subpart J.</li> <li>The first column to the right of the chemical</li></ol></li></ul></li></ul> | 1718                 | Section 742.5 | 515 Tie               | er 1 Remediation Objectives Tables for the Indoor Inhalation Exposure             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------------------|-----------------------------------------------------------------------------------|
| 1721       a)       When the mode of contaminant transport is both diffusion and advection as         1722       described in Section 742.505 (i.e., soil or groundwater contamination is within 5         1723       feet of an existing or potential building or man-made pathway), the remediation         1724       objectives for soil gas and groundwater listed in Appendix B. Table H shall be         1725       used.         1726       1)       The first column to the right of the chemical name lists the soil gas         1728       remediation objectives for residential receptors.         1730       2)       The second column lists the soil gas remediation objectives for         1731       industrial/commercial receptors.         1732       3)       The third column lists the groundwater remediation objectives for         1734       residential receptors.         1735       4)       The fourth column lists the groundwater remediation objectives for         1737       residential receptors.         1738       b)       When the mode of contaminant transport is diffusion only as described in Section         1740       742.505 (i.e., soil and groundwater contamination are more than 5 feet from an         1741       existing or potential building or man-made pathway), the remediation objectives for         1742       for soil gas and groundwater residential receptors.     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1719                 | Route         |                       |                                                                                   |
| 1723       feedence in focus of 172,200 protein label of grounwade pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table H shall be used.         1724       objectives for soil gas and groundwater listed in Appendix B. Table H shall be used.         1727       1)       The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.         1730       2)       The second column lists the soil gas remediation objectives for industrial/commercial receptors.         1731       133       3)       The third column lists the groundwater remediation objectives for residential receptors.         1734       residential commercial receptors.       1734         1735       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1738       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1738       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1739       b)       When the mode of contaminant transport is diffusion only as described in Section 742,505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for residential and prove the soil gas remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.         1742       Fresecond column lists th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1720<br>1721<br>1722 | <u>a)</u>     | <u>When</u><br>descri | the mode of contaminant transport is both diffusion and advection as              |
| 1724       objectives for soil gas and groundwater listed in Appendix B. Table H shall be<br>used.         1725       used.         1726       1)       The first column to the right of the chemical name lists the soil gas<br>remediation objectives for residential receptors.         1729       2)       The second column lists the soil gas remediation objectives for<br>industrial/commercial receptors.         1731       10       The third column lists the groundwater remediation objectives for<br>residential receptors.         1735       3)       The third column lists the groundwater remediation objectives for<br>industrial/commercial receptors.         1736       4)       The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.         1738       1737       1738         1738       1737       1742.505 (i.e., soil and groundwater contamination are more than 5 feet from an<br>existing or potential building or man-made pathway), the remediation objectives for<br>soil gas and groundwater listed in Appendix B, Table I shall be used.         1742       for soil gas and groundwater listed in Appendix B, Table I shall be used.         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas<br>remediation objectives for residential receptors.         1744       accordance with Subpart J.       1744         1745       1)       The first column lists t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1723                 |               | feet of               | f an existing or potential building or man-made pathway), the remediation         |
| 1725       used.         1726       1)       The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.         1729       2)       The second column lists the soil gas remediation objectives for industrial/commercial receptors.         1731       10       The third column lists the groundwater remediation objectives for residential receptors.         1732       3)       The third column lists the groundwater remediation objectives for residential receptors.         1735       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1738       5)       When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.         1744       1)       The first column lists the soil gas remediation objectives for residential receptors.         1744       2)       The second column lists the groundwater remediation objectives for industrial/commercial receptors.         1745       1)       The first column lists the groundwater remediation objectives for residential neceptors.         1744       10       The second column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1724                 |               | object                | tives for soil gas and groundwater listed in Appendix B. Table H shall be         |
| <ul> <li>1726</li> <li>1) The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.</li> <li>1730</li> <li>2) The second column lists the soil gas remediation objectives for industrial/commercial receptors.</li> <li>1733</li> <li>3) The third column lists the groundwater remediation objectives for residential receptors.</li> <li>1734</li> <li>1735</li> <li>4) The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>1736</li> <li>4) The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>1738</li> <li>b) When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.</li> <li>1744 accordance with Subpart J.</li> <li>1745</li> <li>10) The first column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>1746</li> <li>11) The first column to the right of the chemical name lists the soil gas remediation objectives for industrial/commercial receptors.</li> <li>1747</li> <li>1748</li> <li>1749</li> <li>20) The second column lists the groundwater remediation objectives for residential receptors.</li> <li>1751</li> <li>1752</li> <li>31) The third column lists the groundwater remediation objectives for residential receptors.</li> <li>1753</li> <li>1754</li> <li>4) The fourth column lists the groundwater remediation objectives for residential receptors.</li> <li>1754</li> <li>4) The fourth column lists the groundwater remediation objectives for residential receptors.</li> <li>1755</li> <li>4) The fourth column lists the groundwater remediation objectives for residential receptors.</li> <li>1754</li> <li>50</li> <li>51</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li></li></ul>                     | 1725                 |               | used.                 |                                                                                   |
| <ul> <li>1) The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.</li> <li>1729 <ol> <li>The second column lists the soil gas remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1731 <ol> <li>The third column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1733 <ol> <li>The third column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1734 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1735 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1736 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1737 <ol> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1738 <ol> <li>The fourth column lists the groundwater remediation objectives for soil gas and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.</li> <li>Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.</li> <li>The first column to the right of the chemical name lists the soil gas remediation objectives for industrial/commercial receptors.</li> </ol> </li> <li>1748 <ol> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1748 <ol> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1749 <ol> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> </ol> </li> <li>1751 <ol> <li>The fourth</li></ol></li></ul>            | 1726                 |               |                       |                                                                                   |
| 1728       remediation objectives for residential receptors.         1729       2)       The second column lists the soil gas remediation objectives for industrial/commercial receptors.         1731       industrial/commercial receptors.         1732       3)       The third column lists the groundwater remediation objectives for residential receptors.         1735       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1736       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1737       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1738       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1738       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1740       742.505 (i.e., soil and groundwater listed in Appendix B. Table I shall be used.         1742       for soil gas and groundwater listed in Appendix B. Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.         1744       accordance with Subpart J.         1745       1)       The first column lists the soil gas remediation objectives for industrial/commercial rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1727                 |               | <u>1)</u>             | The first column to the right of the chemical name lists the soil gas             |
| 1730       2) The second column lists the soil gas remediation objectives for         1731       industrial/commercial receptors.         1732       3) The third column lists the groundwater remediation objectives for         1733       3) The third column lists the groundwater remediation objectives for         1734       residential receptors.         1735       4) The fourth column lists the groundwater remediation objectives for         1737       industrial/commercial receptors.         1738       5)         1739       b) When the mode of contaminant transport is diffusion only as described in Section         1740       742.505 (i.e., soil and groundwater contamination are more than 5 feet from an         1741       existing or potential building or man-made pathway), the remediation objectives         1742       for soil gas and groundwater listed in Appendix B. Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in         1744       accordance with Subpart J.         1745       1)       The first column lists the soil gas remediation objectives for         1746       1)       The first column lists the soil gas remediation objectives for         1750       industrial/commercial receptors.       1748         1751       3)       The third column lists the groundwater remediat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1728                 |               |                       | remediation objectives for residential receptors.                                 |
| 1730       2)       The second column lists the soling as remediation objectives for<br>industrial/commercial receptors.         1731       3)       The third column lists the groundwater remediation objectives for<br>residential receptors.         1735       4)       The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.         1736       4)       The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.         1737       1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1729                 |               | 2)                    | The second column lists the soil are remediation objectives for                   |
| 1731       Industriat commercial receptors.         1733       3)       The third column lists the groundwater remediation objectives for residential receptors.         1734       residential receptors.         1735       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1737       industrial/commercial receptors.         1738       1736         1739       b)       When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.         1742       for soil gas and groundwater listed in Appendix B. Table I shall be used.         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas remediation objectives for industrial/commercial receptors.         1748       2)       The second column lists the soil gas remediation objectives for residential receptors.         1751       3)       The third column lists the groundwater remediation objectives for residential receptors.         1751       3)       The third column lists the groundwater remediation objectives for residential receptors.         1752       3)       The fourth column lists the groundwater remediation obje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1731                 |               | <u> </u>              | industrial/commercial recentors                                                   |
| <ul> <li>3) The third column lists the groundwater remediation objectives for residential receptors.</li> <li>3) The third column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>4) The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>b) When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B, Table I shall be used.</li> <li>remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.</li> <li>The first column to the right of the chemical name lists the soil gas remediation objectives for industrial/commercial receptors.</li> <li>The second column lists the groundwater remediation objectives for residential receptors.</li> <li>The third column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> <li>The fourth column lists the groundwater remediation objectives for residential receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ul>                                                                                                           | 1732                 |               |                       | industrial/commercial receptors.                                                  |
| 1734       residential receptors.         1735       1736       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1737       1738       1738         1738       b)       When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.         1741       existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B. Table I shall be used.         1742       for soil gas and groundwater listed in Appendix B. Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas remediation objectives for industrial/commercial receptors.         1748       2)       The second column lists the soil gas remediation objectives for residential receptors.         1750       1       The third column lists the groundwater remediation objectives for residential receptors.         1751       1       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1754<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1733                 |               | 3)                    | The third column lists the groundwater remediation objectives for                 |
| 1735<br>17364)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.1737<br>1738<br>1739b)When the mode of contaminant transport is diffusion only as described in Section<br>0 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an<br>existing or potential building or man-made pathway), the remediation objectives<br>for soil gas and groundwater listed in Appendix B, Table I shall be used.1742<br>1742<br>1743For soil gas and groundwater listed in Appendix B, Table I shall be used.1744<br>1744<br>1744Remediation objectives relying on this table require use of institutional controls in<br>accordance with Subpart J.1745<br>1746<br>17471)The first column to the right of the chemical name lists the soil gas<br>remediation objectives for residential receptors.1748<br>1749<br>17502)The second column lists the soil gas remediation objectives for<br>industrial/commercial receptors.1751<br>1752<br>1753<br>17543)The third column lists the groundwater remediation objectives for<br>residential receptors.1755<br>1756<br>17564)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.1757<br>1756<br>175611In the fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.1757<br>1757<br>1758<br>17582)If using Appendix B, Table H, compliance is determined by meeting either the<br>reliation within a solution objective of the reliation objective of the rel                                                                                                                                                                                                                                                                                                                                                                                                                   | 1734                 |               |                       | residential receptors.                                                            |
| <ul> <li>1736</li> <li>4) The fourth column lists the groundwater remediation objectives for<br/>industrial/commercial receptors.</li> <li>1738</li> <li>b) When the mode of contaminant transport is diffusion only as described in Section<br/>742.505 (i.e., soil and groundwater contamination are more than 5 feet from an<br/>existing or potential building or man-made pathway), the remediation objectives<br/>for soil gas and groundwater listed in Appendix B. Table I shall be used.</li> <li>1743 Remediation objectives relying on this table require use of institutional controls in<br/>accordance with Subpart J.</li> <li>1745</li> <li>1) The first column to the right of the chemical name lists the soil gas<br/>remediation objectives for residential receptors.</li> <li>1748</li> <li>1749</li> <li>2) The second column lists the soil gas remediation objectives for<br/>industrial/commercial receptors.</li> <li>1751</li> <li>1752</li> <li>3) The third column lists the groundwater remediation objectives for<br/>residential receptors.</li> <li>1754</li> <li>4) The fourth column lists the groundwater remediation objectives for<br/>industrial/commercial receptors.</li> <li>1754</li> <li>1755</li> <li>4) The fourth column lists the groundwater remediation objectives for<br/>industrial/commercial receptors.</li> <li>1754</li> <li>1755</li> <li>5</li> <li>6) If using Appendix B. Table H. compliance is determined by meeting either the<br/>avia remediation ebjective either the soil gas remediation objectives for<br/>industrial/commercial receptors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1735                 |               |                       |                                                                                   |
| <ul> <li>industrial/commercial receptors.</li> <li>industrial/commercial receptors.</li> <li>When the mode of contaminant transport is diffusion only as described in Section 742.505 (i.e., soil and groundwater contamination are more than 5 feet from an existing or potential building or man-made pathway), the remediation objectives for soil gas and groundwater listed in Appendix B, Table I shall be used.</li> <li>Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.</li> <li>The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.</li> <li>The second column lists the soil gas remediation objectives for industrial/commercial receptors.</li> <li>The third column lists the groundwater remediation objectives for residential receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> <li>The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1736                 |               | <u>4)</u>             | The fourth column lists the groundwater remediation objectives for                |
| 17381739b)When the mode of contaminant transport is diffusion only as described in Section1740742.505 (i.e., soil and groundwater contamination are more than 5 feet from an<br>existing or potential building or man-made pathway), the remediation objectives1741existing or potential building or man-made pathway), the remediation objectives<br>for soil gas and groundwater listed in Appendix B, Table I shall be used.1742Remediation objectives relying on this table require use of institutional controls in<br>accordance with Subpart J.1744Remediation objectives relying on this table require use of institutional controls in<br>accordance with Subpart J.1745The first column to the right of the chemical name lists the soil gas<br>remediation objectives for residential receptors.1748The first column lists the soil gas remediation objectives for<br>industrial/commercial receptors.1750The second column lists the groundwater remediation objectives for<br>residential receptors.1751The third column lists the groundwater remediation objectives for<br>residential receptors.1753The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.1754The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.17554)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.1756If using Appendix B, Table H, compliance is determined by meeting either the<br>exil are providiction objective and be the objective                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1737                 |               |                       | industrial/commercial receptors.                                                  |
| 1739b)When the mode of contaminant transport is diffusion only as described in Section1740742.505 (i.e., soil and groundwater contamination are more than 5 feet from an1741existing or potential building or man-made pathway), the remediation objectives1742for soil gas and groundwater listed in Appendix B, Table I shall be used.1743Remediation objectives relying on this table require use of institutional controls in1744accordance with Subpart J.17451)The first column to the right of the chemical name lists the soil gas1747remediation objectives for residential receptors.17482)The second column lists the soil gas remediation objectives for<br>industrial/commercial receptors.17503)The third column lists the groundwater remediation objectives for<br>residential receptors.17544)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.17565)If using Appendix B, Table H, compliance is determined by meeting either the<br>eith are mercialition either the<br>column lists the soil determined by meeting either the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1738                 |               |                       |                                                                                   |
| 1740       742.505 (i.e., soil and groundwater contamination are more than 5 feet from an         1741       existing or potential building or man-made pathway), the remediation objectives         1742       for soil gas and groundwater listed in Appendix B. Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas         1747       remediation objectives for residential receptors.         1748       2)       The second column lists the soil gas remediation objectives for         1750       industrial/commercial receptors.         1751       3)       The third column lists the groundwater remediation objectives for         1753       1       The fourth column lists the groundwater remediation objectives for         1754       1       The fourth column lists the groundwater remediation objectives for         1755       4)       The fourth column lists the groundwater remediation objectives for         1756       industrial/commercial receptors.       1         1757       1       1         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the         1758       c)       If using Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1739                 | <u>b)</u>     | When                  | the mode of contaminant transport is diffusion only as described in Section       |
| 1741       existing or potential building or man-made pathway), the remediation objectives         1742       for soil gas and groundwater listed in Appendix B, Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas         1747       remediation objectives for residential receptors.         1748       2)       The second column lists the soil gas remediation objectives for         1750       industrial/commercial receptors.         1751       3)       The third column lists the groundwater remediation objectives for         1753       residential receptors.         1754       4)       The fourth column lists the groundwater remediation objectives for         1756       1       The fourth column lists the groundwater remediation objectives for         1757       1756       1       The fourth column lists the groundwater remediation objectives for         1757       1757       1       1       The fourth column lists the groundwater remediation objectives for         1757       1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the         1758       c)       If using Appendix B, Table H, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1740                 |               | 742.50                | 05 (i.e., soil and groundwater contamination are more than 5 feet from an         |
| 1/42       for soll gas and groundwater listed in Appendix B, Table I shall be used.         1743       Remediation objectives relying on this table require use of institutional controls in accordance with Subpart J.         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.         1748       1)       The second column lists the soil gas remediation objectives for industrial/commercial receptors.         1750       3)       The third column lists the groundwater remediation objectives for residential receptors.         1751       3)       The third column lists the groundwater remediation objectives for residential receptors.         1751       1       The fourth column lists the groundwater remediation objectives for residential receptors.         1753       1       1         1754       1       1         1755       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1756       1       1       1         1757       1       1       1         1758       c)       1       1         1759       1       1       1         1758       1       1       1         1759       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1741                 |               | <u>existii</u>        | ng or potential building or man-made pathway), the remediation objectives         |
| 1743       Remediation objectives relying on this table require use of institutional controls in         1744       accordance with Subpart J.         1745       1)       The first column to the right of the chemical name lists the soil gas         1746       1)       The first column to the right of the chemical name lists the soil gas         1747       remediation objectives for residential receptors.         1748       1         1749       2)       The second column lists the soil gas remediation objectives for         1750       industrial/commercial receptors.         1751       1         1752       3)       The third column lists the groundwater remediation objectives for         1753       residential receptors.         1754       1         1755       4)       The fourth column lists the groundwater remediation objectives for         1756       industrial/commercial receptors.         1757       1         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1742                 |               | <u>for so</u>         | <u>Il gas and groundwater listed in Appendix B, Table I shall be used.</u>        |
| 1744       accordance with subpart 5.         1745       1)       The first column to the right of the chemical name lists the soil gas remediation objectives for residential receptors.         1747       remediation objectives for residential receptors.         1748       2)       The second column lists the soil gas remediation objectives for industrial/commercial receptors.         1750       3)       The third column lists the groundwater remediation objectives for residential receptors.         1751       3)       The third column lists the groundwater remediation objectives for residential receptors.         1753       1       1         1755       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1756       1       1         1757       1       1         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the rail groundwater remediation objectives for industrial/commercial receptors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1743                 |               | Keme                  | diation objectives relying on this table require use of institutional controls in |
| 17451)The first column to the right of the chemical name lists the soil gas<br>remediation objectives for residential receptors.17471)The first column to the right of the chemical name lists the soil gas<br>remediation objectives for residential receptors.174811111749121117501111175011111751111752131117531111175411175514175615175711175811175812175815175815175815175815175815175815175815175815175815175815175815175915175815175815175815175815175915175915175815175815175915175915175815175815175915175015175015175015175015175015175015175015175015175015175015175015175015 </td <td>1744</td> <td></td> <td>accon</td> <td>lance with Subpart J.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1744                 |               | accon                 | lance with Subpart J.                                                             |
| 171617110 Interfact contains to the right of the elemental name nots the soft gas1747remediation objectives for residential receptors.1748174917492)The second column lists the soil gas remediation objectives for<br>industrial/commercial receptors.1751175217533)The third column lists the groundwater remediation objectives for<br>residential receptors.1754175517554)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.1756111757151758c)If using Appendix B, Table H, compliance is determined by meeting either the<br>exil sea remediation objective seaths are subscription objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1746                 |               | 1)                    | The first column to the right of the chemical name lists the soil gas             |
| 174817492)The second column lists the soil gas remediation objectives for<br>industrial/commercial receptors.17503)The third column lists the groundwater remediation objectives for<br>residential receptors.17513)The third column lists the groundwater remediation objectives for<br>residential receptors.17534)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.175417554)175611111757151758c)If using Appendix B, Table H, compliance is determined by meeting either the<br>arither while the second between disting this time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1747                 |               | <u>-</u> /            | remediation objectives for residential receptors                                  |
| 17492)The second column lists the soil gas remediation objectives for<br>industrial/commercial receptors.17513)The third column lists the groundwater remediation objectives for<br>residential receptors.17533)The third column lists the groundwater remediation objectives for<br>residential receptors.17544)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.17554)The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.17561111175712131758c)If using Appendix B, Table H, compliance is determined by meeting either the<br>asil are annealistic a chieve and a second provident and                                                                                                                                                                                                                                                                                                                                   | 1748                 |               |                       |                                                                                   |
| 1750industrial/commercial receptors.1751175217531753175417551756175717571758c)If using Appendix B, Table H, compliance is determined by meeting either the1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1749                 |               | 2)                    | The second column lists the soil gas remediation objectives for                   |
| <ul> <li>1751</li> <li>1752</li> <li>1753</li> <li>1754</li> <li>1755</li> <li>1756</li> <li>1757</li> <li>1757</li> <li>1758</li> <li>c) If using Appendix B, Table H, compliance is determined by meeting either the soil are sumediation exists and sume disting which the sum of the sum</li></ul>                      | 1750                 |               |                       | industrial/commercial receptors.                                                  |
| 17523)The third column lists the groundwater remediation objectives for<br>residential receptors.1753residential receptors.1754175517561766175717571758c)1759If using Appendix B, Table H, compliance is determined by meeting either the<br>asil are sumediation objectives and a sumediation objective and a sumed                                                                                                                                                                                                                                     | 1751                 |               |                       |                                                                                   |
| 1753       residential receptors.         1754       1755         1755       4)       The fourth column lists the groundwater remediation objectives for industrial/commercial receptors.         1756       industrial/commercial receptors.         1757       1758         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the soil are muchicitize and by the source distinguishing the source distinguishing and by the source distinguishing the sou                                                                                                                                                                                                                                                                        | 1752                 |               | <u>3)</u>             | The third column lists the groundwater remediation objectives for                 |
| 1754         1755       4)       The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.         1756       industrial/commercial receptors.         1757       1758         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the<br>acil are sumediation objectives and a sume distinguishing of the sum of the                                                                                                                                                                                                                      | 1753                 |               |                       | residential receptors.                                                            |
| 1755       4)       The fourth column lists the groundwater remediation objectives for<br>industrial/commercial receptors.         1756       industrial/commercial receptors.         1757       1758       c)         1758       c)       If using Appendix B, Table H, compliance is determined by meeting either the<br>acil are sumediation objectives and a sume distinguishing on the sum of the                                                                                                                                                                                                      | 1754                 |               |                       |                                                                                   |
| 1756       industrial/commercial receptors.         1757       1758         c)       If using Appendix B, Table H, compliance is determined by meeting either the         1750       acil accommercial receptors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1755                 |               | <u>4)</u>             | The fourth column lists the groundwater remediation objectives for                |
| 1757<br>1758 c) If using Appendix B, Table H, compliance is determined by meeting either the<br>1750 acid are annualistical acid and the second background is the second backgr                           | 1756                 |               |                       | industrial/commercial receptors.                                                  |
| 1750 <u>c) It using Appendix B, Table H, compliance is determined by meeting either the</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/3/                 | 2)            | If                    | Annondiv D. Table II. compliance is determined by martine sitter the              |
| (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1750                 | <u>c)</u>     |                       | is Appendix D, Table H, compliance is determined by meeting either the            |
| 1757 <u>son gas remediation objectives of the groundwater remediation objectives.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1760                 |               | <u>5011 ga</u>        | as remediation objectives of the groundwater remediation objectives.              |

.

| 1761 | <u>d)</u>   | <u>If usir</u> | ng Appendix B, Table I, compliance is determined by meeting both the soil        |
|------|-------------|----------------|----------------------------------------------------------------------------------|
| 1762 |             | gas re         | mediation objectives and the groundwater remediation objectives.                 |
| 1763 |             |                |                                                                                  |
| 1764 | <u>e)</u>   | <u>For ve</u>  | <u>olatile chemicals not listed in Appendix B, Table H or I, a person may</u>    |
| 1765 |             | reques         | st site-specific remediation objectives from the Agency or propose site-         |
| 1766 |             | specif         | ic remediation objectives in accordance with Subpart I, or both.                 |
| 1767 |             |                |                                                                                  |
| 1768 | (Sou        | rce: Add       | led at 36 Ill. Reg, effective)                                                   |
| 1769 |             |                |                                                                                  |
| 1770 |             |                | SUBPART F: TIER 2 GENERAL EVALUATION                                             |
| 1771 |             |                |                                                                                  |
| 1772 | Section 742 | .600 Tie       | er 2 Evaluation Overview                                                         |
| 1773 |             |                |                                                                                  |
| 1774 | a)          | Tier 2         | remediation objectives are developed through the use of equations which          |
| 1775 |             | allow          | site-specific data to be used. (See Appendix C, Illustrations A and B.) The      |
| 1776 |             | equati         | ons identified in Appendix C, Tables A, and C, and L may be used to              |
| 1777 |             | develo         | op Tier 2 remediation objectives.                                                |
| 1778 |             |                |                                                                                  |
| 1779 | b)          | Tier 2         | evaluation is only required for contaminants of concern and corresponding        |
| 1780 |             | expos          | ure routes (except where excluded from further consideration under Subpart       |
| 1781 |             | C) exc         | ceeding the Tier 1 remediation objectives. When conducting Tier 2                |
| 1782 |             | evalua         | ations, the values used in the calculations must have the appropriate units of   |
| 1783 |             | measu          | are as identified in Appendix C, Tables B, and D, and M.                         |
| 1784 |             |                |                                                                                  |
| 1785 | c)          | Any d          | evelopment of remediation objectives using site-specific information or          |
| 1786 |             | equati         | ons outside the Tier 2 framework shall be evaluated under Tier 3.                |
| 1787 |             |                |                                                                                  |
| 1788 | d)          | Any d          | evelopment of a remediation objective under Tier 2 shall not use a target        |
| 1789 |             | hazaro         | d quotient greater than one at the point of human exposure or a target cancer    |
| 1790 |             | risk gi        | reater than 1 in 1,000,000 at the point of human exposure.                       |
| 1791 |             | -              |                                                                                  |
| 1792 | e)          | In con         | ducting a Tier 2 evaluation, the following conditions shall be met:              |
| 1793 |             | 1              |                                                                                  |
| 1794 |             | 1)             | For each discrete sample, the total soil contaminant concentration of either     |
| 1795 |             |                | a single contaminant or multiple contaminants of concern shall not exceed        |
| 1796 |             |                | the attenuation capacity of the soil as provided in Section 742.215.             |
| 1797 |             | •              |                                                                                  |
| 1798 |             | 2)             | Remediation objectives for noncarcinogenic compounds which affect the            |
| 1799 |             |                | same target organ, organ system or similar mode of action shall meet the         |
| 1800 |             |                | requirements of Section 742.720.                                                 |
| 1801 |             | 2)             |                                                                                  |
| 1802 |             | 3)             | I ne soll remediation objectives based on the <u>outdoor inhalation exposure</u> |
| 1803 |             |                | route inhalation and the soil component of the groundwater ingestion             |

| 1804<br>1805 |                  | exposure routes shall not exceed the soil saturation limit as provided in Section 742.220.                  |
|--------------|------------------|-------------------------------------------------------------------------------------------------------------|
| 1806         |                  |                                                                                                             |
| 1807         |                  | 4) The soil gas remediation objectives based on the indoor and outdoor                                      |
| 1808         |                  | inhalation exposure routes shall not exceed the soil vapor saturation limit                                 |
| 1809         |                  | provided in Section 742.222.                                                                                |
| 1810         |                  |                                                                                                             |
| 1811         | <u>f</u> )       | Tier 2 remediation objectives for the indoor inhalation exposure route shall be                             |
| 1812         |                  | calculated for either soil gas or groundwater if a Q <sub>soil</sub> value of 83.33 cm <sup>3</sup> /sec is |
| 1813         |                  | used.                                                                                                       |
| 1814         |                  |                                                                                                             |
| 1815         | <u>g)</u>        | Tier 2 remediation objectives for the indoor inhalation exposure route shall be                             |
| 1816         |                  | calculated for both soil gas and groundwater if a $Q_{soil}$ value of 0.0 cm <sup>3</sup> /sec is used.     |
| 1817         |                  |                                                                                                             |
| 1818         | <u>h)</u> f)     | If the calculated Tier 2 soil remediation objective for an applicable exposure route                        |
| 1819         |                  | is more stringent than the corresponding Tier 1 remediation objective, then the                             |
| 1820         |                  | Tier 1 remediation objective applies.                                                                       |
| 1821         |                  |                                                                                                             |
| 1822         | i) <del>g)</del> | If the calculated Tier 2 soil remediation objective for an exposure route is more                           |
| 1823         | <i>40</i>        | stringent than the Tier 1 soil remediation <u>objectives</u> objectives for the other                       |
| 1824         |                  | exposure routes, then the Tier 2 calculated soil remediation objective applies and                          |
| 1825         |                  | Tier 2 soil remediation objectives for the other exposure routes are not required.                          |
| 1826         |                  | 5 1 1                                                                                                       |
| 1827         | i) <del>h)</del> | If the calculated Tier 2 soil remediation objective is less stringent than one or                           |
| 1828         | / موجع           | more of the soil remediation objectives for the remaining exposure routes, then                             |
| 1829         |                  | the Tier 2 values are calculated for the remaining exposure routes <del>route(s)</del> and the              |
| 1830         |                  | most stringent Tier 2 calculated value applies.                                                             |
| 1831         |                  |                                                                                                             |
| 1832         | k)               | If a contaminant has both carcinogenic and noncarcinogenic effects for any                                  |
| 1833         |                  | applicable exposure route or receptor, remediation objectives shall be calculated                           |
| 1834         |                  | for each effect and the more stringent remediation objective shall apply. The                               |
| 1835         |                  | toxicological-specific information is described in Section 742,705(d).                                      |
| 1836         |                  |                                                                                                             |
| 1837         | (Sourc           | e: Amended at 36 III. Reg. effective )                                                                      |
| 1838         | (                | ······································                                                                      |
| 1839         | Section 742.6    | 05 Land Use                                                                                                 |
| 1840         |                  |                                                                                                             |
| 1841         | a)               | Present and post-remediation land use is evaluated in a Tier 2 evaluation.                                  |
| 1842         |                  | Acceptable exposure factors for the Tier 2 evaluation for residential.                                      |
| 1843         |                  | industrial/commercial, and construction worker populations are provided in the                              |
| 1844         |                  | far right column of Appendix C, Tables Band D, and M. Use of exposure factors                               |
| 1845         |                  | different from those in Appendix C. Tables B. and D. and M must be approved by                              |
| 1846         |                  | the Agency as part of a Tier 3 evaluation.                                                                  |

| 1847                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1848                                                                                                                                                         | b)           | If a T             | ier 2 evaluation is based on an industrial/commercial property use, then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1849                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1850                                                                                                                                                         |              | 1)                 | Construction worker populations shall also be evaluated, except for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1851                                                                                                                                                         |              |                    | indoor inhalation exposure route; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1852                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1853                                                                                                                                                         |              | 2)                 | Institutional controls are required in accordance with Subpart J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1854                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1855                                                                                                                                                         | (Sou         | rce: An            | nended at 36 III. Reg, effective )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1856                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1857                                                                                                                                                         | Section 742. | 610 Cł             | nemical and Site Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1858                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1859                                                                                                                                                         | a)           | Physi              | cal and Chemical Properties of Contaminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1860                                                                                                                                                         |              | Tier 2             | 2 evaluations require information on the physical and chemical properties of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1861                                                                                                                                                         |              | the co             | ontaminants of concern. The physical and chemical properties used in a Tier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1862                                                                                                                                                         |              | 2 eva              | luation are contained in Appendix C, Table E. If the site has contaminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1863                                                                                                                                                         |              | not in             | cluded in this table, a person may request the Agency to provide the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1864                                                                                                                                                         |              | applic             | cable physical and chemical input values or may propose input values under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1865                                                                                                                                                         |              | Subp               | art I. If a person proposes to apply values other than those in Appendix C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1866                                                                                                                                                         |              | Table              | E, or those provided by the Agency, the evaluation shall be considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1867                                                                                                                                                         |              | under              | Tier 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1868                                                                                                                                                         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                              |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1869                                                                                                                                                         | b)           | Soil a             | und Groundwater Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1869<br>1870                                                                                                                                                 | b)           | Soil a             | und Groundwater Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1869<br>1870<br>1871                                                                                                                                         | b)           | Soil a<br>1)       | and Groundwater Parameters<br>A Tier 2 evaluation requires examination of soil and groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1869<br>1870<br>1871<br>1872                                                                                                                                 | b)           | Soil a<br>1)       | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1869<br>1870<br>1871<br>1872<br>1873                                                                                                                         | b)           | Soil a<br>1)       | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874                                                                                                                 | b)           | Soil a<br>1)       | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B, and D, and M. If a person proposes to vary site-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875                                                                                                         | b)           | Soil a<br>1)       | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B, and D, and M. If a person proposes to vary site-<br>specific parameters outside of the framework of these tables, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876                                                                                                 | b)           | Soil a<br>1)       | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B, and D, and M. If a person proposes to vary site-<br>specific parameters outside of the framework of these tables, the<br>evaluation shall be considered under Tier 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877                                                                                         | b)           | Soil a             | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B, and D, and M. If a person proposes to vary site-<br>specific parameters outside of the framework of these tables, the<br>evaluation shall be considered under Tier 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878                                                                                 | b)           | Soil a<br>1)<br>2) | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B <u>, and D, and M</u> . If a person proposes to vary site-<br>specific parameters outside of the framework of these tables, the<br>evaluation shall be considered under Tier 3.<br>To determine site-specific physical soil parameters, a minimum of one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879                                                                         | b)           | Soil a<br>1)<br>2) | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B, <u>and D, and M</u> . If a person proposes to vary site-<br>specific parameters outside of the framework of these tables, the<br>evaluation shall be considered under Tier 3.<br>To determine site-specific physical soil parameters, a minimum of one<br>boring per 0.5 acre of contamination shall be collected. This boring must                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880                                                                 | b)           | Soil a<br>1)<br>2) | A Tier 2 evaluation requires examination of soil and groundwater<br>parameters. The parameters that may be varied, and the conditions under<br>which these parameters are determined as part of Tier 2, are summarized<br>in Appendix C, Tables B, and D, and M. If a person proposes to vary site-<br>specific parameters outside of the framework of these tables, the<br>evaluation shall be considered under Tier 3.<br>To determine site-specific physical soil parameters, a minimum of one<br>boring per 0.5 acre of contamination shall be collected. This boring must<br>be deep enough to allow the collection of the required field measurements.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881                                                         | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B, and D, and M. If a person proposes to vary site-specific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the</li> </ul>                                                                                                                                                                                                                                                                                                                          |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882                                                 | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B, and D, and M. If a person proposes to vary site-specific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unitsunit(s)</u> being</li> </ul>                                                                                                                                                                                                                                           |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883                                         | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B<u>a</u>-and D<u>and M</u>. If a person proposes to vary sitespecific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unitsunit(s)</u> being evaluated. For example, if evaluating the soil component of the</li> </ul>                                                                                                                                                                |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883<br>1884                 | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B, and D, and M. If a person proposes to vary sitespecific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>units</u> unit(s) being evaluated. For example, if evaluating the soil component of the groundwater ingestion exposure route, two samples from the boring will</li> </ul>                                                                                                    |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883<br>1884<br>1885                         | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B, and D, and M. If a person proposes to vary sitespecific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unitsunit(s)</u> being evaluated. For example, if evaluating the soil component of the groundwater ingestion exposure route, two samples from the boring will be required:</li> </ul>                                                                                        |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883<br>1884<br>1885<br>1886                 | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B<u>, and D</u>, and M. If a person proposes to vary site-specific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unitsunit(s)</u> being evaluated. For example, if evaluating the soil component of the boring will be required:</li> </ul>                                                                                                                                           |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883<br>1884<br>1885<br>1886<br>1887         | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B<sub>3</sub>-and D, and M. If a person proposes to vary site-specific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unitsunit(s)</u> being evaluated. For example, if evaluating the soil component of the groundwater ingestion exposure route, two samples from the boring will be required:</li> <li>A) A sample of the predominant soil type for the vadose zone; and</li> </ul> |
| 1869<br>1870<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883<br>1884<br>1885<br>1886<br>1887<br>1888 | b)           | Soil a<br>1)<br>2) | <ul> <li>A Tier 2 evaluation requires examination of soil and groundwater parameters. The parameters that may be varied, and the conditions under which these parameters are determined as part of Tier 2, are summarized in Appendix C, Tables B, and D, and M. If a person proposes to vary site-specific parameters outside of the framework of these tables, the evaluation shall be considered under Tier 3.</li> <li>To determine site-specific physical soil parameters, a minimum of one boring per 0.5 acre of contamination shall be collected. This boring must be deep enough to allow the collection of the required field measurements. The site-specific physical soil parameters must be determined from the portion of the boring representing the stratigraphic <u>unitsunit(s)</u> being evaluated. For example, if evaluating the soil component of the groundwater ingestion exposure route, two samples from the boring will be required:</li> <li>A) A sample of the predominant soil type for the vadose zone; and</li> </ul>            |

| 1890  |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------------|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1891  |               | 3)         | A site        | -specific SSL dilution factor (used in developing soil remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1892  |               | ,          | object        | tives based upon the protection of groundwater) may be determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1893  |               |            | by sul        | bstituting site information in Equation S22 in Appendix C. Table A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1894  |               |            | To ma         | ake this demonstration, a minimum of three monitoring wells shall be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1895  |               |            | used t        | to determine the hydraulic gradient. As an alternative, the default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1896  |               |            | diluti        | on factor value listed in Appendix C. Table B may be used. If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1897  |               |            | monit         | coring wells are used to determine the hydraulic gradient, the soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1898  |               |            | taken         | from the borings shall be visually inspected to ensure there are no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1899  |               |            | signif        | icant differences in the stratigraphy. If there are similar soil types in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1900  |               |            | the fie       | eld, one boring shall be used to determine the site-specific physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1901  |               |            | soil n        | arameters. If there are significant differences all of the borings shall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902  |               |            | be eva        | aluated before determining the site-specific physical soil parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1903  |               |            | for the       | e site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1904  |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1905  |               | 4)         | Not a         | ll of the parameters identified in Appendix C. Tables B -and D. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1906  |               | •)         | Minee         | ed to be determined on a site-specific basis. A person may choose to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1907  |               |            | collec        | t partial site-specific information and use default values as listed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1908  |               |            | Apper         | ndix C. Tables B -and D and M for the rest of the parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1909  |               |            | · · pp ·      | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| 1910  |               | (Sourc     | e: Am         | ended at 36 III. Reg. effective )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1911  |               | (          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1912  |               | SUB        | PART          | G: TIER 2 SOIL AND SOIL GAS EVALUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1913  |               | 202        |               | or filled som <u>fille som otte</u> i filloffillore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1914  | Section 742.7 | 700 Tie    | r 2 Soi       | l Evaluation Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1915  |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1916  | a)            | Tier 2     | remedi        | ation objectives are developed through the use of models which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1917  | u)            | allow      | site-sne      | ecific data to be considered. Appendix C. Tables A <del>and</del> C and L list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1918  |               | equati     | ons that      | t shall be used under a Tier 2 evaluation to calculate soil remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1919  |               | object     | ives pre      | escribed by SSL and RBCA and the modified L&E models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1920  |               | respec     | tively.       | (See also Appendix C. Illustration A.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1921  |               | respec     | u verj.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1922  | h)            | Annen      | dix C         | Table A lists equations that are used under the SSL model (See also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1923  | 0)            | Appen      | dix C         | Illustration A) The SSL model has equations to evaluate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1924  |               | follow     | ving hin      | nan exposure routes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1925  |               | 10110 11   | 1116 1141     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1926  |               | 1)         | Soil ir       | ngestion exposure route.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1927  |               | 1)         | bon n         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1928  |               | 2)         | Outdo         | or Inhalation exposure route: and for:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1929  |               | <i>-</i> , | June          | <u>And and a postile route, and</u> for.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1930  |               |            | <u> </u>      | Organic contaminants:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1931  |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1932  |               |            | <del>B)</del> | Fugitive dust: and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| سار د |               |            | <i>D</i> )    | r abraro aubi, una                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 1933 |                  |         |                                                                                     |
|------|------------------|---------|-------------------------------------------------------------------------------------|
| 1934 |                  | 3)      | Soil component of the groundwater ingestion exposure route.                         |
| 1935 |                  | ,       |                                                                                     |
| 1936 | c)               | Evalua  | ation of the dermal exposure route is not required under the SSL model.             |
| 1937 | ,                |         | 1 1                                                                                 |
| 1938 | d)               | Apper   | ndix C, Table C lists equations that are used under the RBCA model. (See            |
| 1939 | ,                | also A  | ppendix C, Illustration A.) The RBCA model has equations to evaluate                |
| 1940 |                  | humar   | n exposure based on the following:                                                  |
| 1941 |                  |         | 1                                                                                   |
| 1942 |                  | 1)      | The combined exposure routes of outdoor inhalation of vapors and                    |
| 1943 |                  | ,       | particulates, soil ingestion and dermal contact with soil:                          |
| 1944 |                  |         | ,                                                                                   |
| 1945 |                  | 2)      | The outdoor inhalation exposure <del>ambient vapor inhalation (outdoor)</del> route |
| 1946 |                  | _)      | from subsurface soils:                                                              |
| 1947 |                  |         |                                                                                     |
| 1948 |                  | 3)      | Soil component of the groundwater ingestion route: and                              |
| 1949 |                  | -)      |                                                                                     |
| 1950 |                  | 4)      | Groundwater ingestion exposure route.                                               |
| 1951 |                  | •)      |                                                                                     |
| 1952 | e)               | Apper   | ndix C. Table L lists equations that are used under the modified J&E model.         |
| 1953 | <u>-</u> ,       | The m   | odified J&E model has equations to evaluate human exposure by the indoor            |
| 1954 |                  | inhala  | tion exposure route. The modified model allows for the development of soil          |
| 1955 |                  | gas rei | mediation objectives.                                                               |
| 1956 |                  | B       |                                                                                     |
| 1957 | f) <del>e)</del> | The ec  | nuations in either Appendix C. Table A -or C. or L. may be used to calculate        |
| 1958 | <u>~1</u> ~)     | remed   | intion objectives for each contaminant of concern under Tier 2 if the               |
| 1959 |                  | follow  | ing requirements are met.                                                           |
| 1960 |                  | 10110   | mg requirements are met                                                             |
| 1961 |                  | 1)      | The Tier 2 soil or soil gas remediation objectives for the ingestion and            |
| 1962 |                  | -)      | outdoor inhalation exposure routes shall use the applicable equations from          |
| 1963 |                  |         | the same approach (i.e. SSL equations in Appendix C. Table C). For the              |
| 1964 |                  |         | indoor inhalation exposure route, only the I&E equations can be used                |
| 1965 |                  |         | <u>mader miniation enposite route, only nie veels equations ear ee asea.</u>        |
| 1966 |                  | 2)      | The equations used to calculate soil remediation objectives for the soil            |
| 1967 |                  | -)      | component of the groundwater ingestion exposure route are not dependent             |
| 1968 |                  |         | on the approach utilized to calculate soil remediation objectives for the           |
| 1969 |                  |         | other exposure routes. For example, it is acceptable to use the SSL                 |
| 1970 |                  |         | equations for calculating Tier 2 soil remediation objectives for the                |
| 1971 |                  |         | ingestion and outdoor inhalation exposure routes and the RBCA equations             |
| 1972 |                  |         | for calculating Tier 2 soil remediation objectives for the soil component of        |
| 1973 |                  |         | the groundwater ingestion exposure route                                            |
| 1974 |                  |         | and Droman and and Dobate route.                                                    |
| 1975 |                  | 3)      | Combining equations from Appendix C. Tables A -and C. and L. to form a              |
| 1710 |                  | 2,      | comments of automs from representations of a function of and D to form a            |

| 1976<br>1977 |                 | new model is not allowed. In addition, Appendix C, Tables A, and C, and $\underline{L}$ must use their own applicable parameters identified in Appendix C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1978         |                 | Tables B, and D, and M, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1980         | a) <del>D</del> | In calculating soil or gas remediation objectives for industrial/commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1981         | 51-)            | property use, applicable calculations shall be performed twice: once using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1982         |                 | industrial/commercial population default values and once using construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1983         |                 | worker population default values. The more stringent soil or gas remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1984         |                 | objectives derived from these calculations must be used for further Tier 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1985         |                 | evaluations. The indoor inhalation exposure route does not apply to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1986         |                 | construction worker population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1987         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1988         | <u>h)g</u>      | Tier 2 data sheets provided by the Agency shall be used to present calculated Tier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1989         |                 | 2 remediation objectives, if required by the particular program for which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1990         |                 | remediation is being performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1991         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1992         | <u>i)</u> h)    | The RBCA equations which rely on the parameter Soil Water Sorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1993         |                 | Coefficient (k <sub>s</sub> ) can only be used for ionizing organics and inorganics by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1994         |                 | substituting values for k <sub>s</sub> from Appendix C, Tables I and J, respectively. This will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1995         |                 | also require the determination of a site-specific value for soil pH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1996         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1997         | j)              | For the outdoor inhalation exposure route, it is acceptable to use either Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1998         |                 | 742.710 to develop a soil remediation objective or Section 742.712 to develop a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1999         |                 | soil gas remediation objective to determine compliance with the pathway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2000         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2001         | (Sourc          | e: Amended at 36 Ill. Reg, effective)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2002         | ~               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2003         | Section 742.7   | 05 Parameters for Soil Remediation Objective Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2004         | ς.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2005         | a)              | Appendix C, Tables B, and D, and M list the input parameters for the SSL, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2006         |                 | RBCA, and J&E equations, respectively. The first column lists each symbol as it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2007         |                 | is presented in the equation. The next column defines the parameters. The third                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2008         |                 | column shows the units for the parameters. The fourth column identifies where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2009         |                 | information on the parameters can be obtained (i.e., field measurement,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2010         |                 | applicable <u>equations</u> equation(s), reference source, or default value). The fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2011         |                 | column identifies now the parameters can be generated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2012         | <b>b</b> )      | Default Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2013         | 0)              | Default values are numerical values specified for use in the Tier 2 equations. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2014         |                 | fourth column of Annendix C. Tables B and D. and M. denotes if the default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2015         |                 | values are from the SSL model RBCA model the modified L&F model or some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2010         |                 | other source. The last column of Appendix C. Tables R and D. and M lists the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2018         |                 | numerical values for the default values used in the SSL and RBCA and I&F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                 | and the set of the set |

٩.

\* •

| 2019 |            | equation | ns, res          | pectively.                                                                  |
|------|------------|----------|------------------|-----------------------------------------------------------------------------|
| 2020 |            |          |                  |                                                                             |
| 2021 | c)         | Site-spe | ecific I         | nformation                                                                  |
| 2022 |            | Site-spe | ecific i         | nformation is a parameter measured, obtained, or determined from            |
| 2023 |            | the site | to calc          | culate Tier 2 remediation objectives. The fourth column of Appendix         |
| 2024 |            | C, Table | es B <u>,</u> -a | and D. and M identifies those site-specific parameters that may             |
| 2025 |            | require  | direct           | field measurement. For some parameters, numerical default inputs            |
| 2026 |            | have be  | en pro           | vided in the last column of Appendix C, Tables B, and D, and M to           |
| 2027 |            | substitu | te for           | site-specific information. In some cases, information on the                |
| 2028 |            | receptor | or so            | il type is required to select the applicable numerical default inputs.      |
| 2029 |            | Site-spe | cific i          | nformation includes:                                                        |
| 2030 |            | 1        |                  |                                                                             |
| 2031 |            | 1) ]     | Physic           | al soil parameters identified in Appendix C. Table F. The second            |
| 2032 |            | (        | colum            | n identifies the location where the sample is to be collected.              |
| 2033 |            |          | Accen            | table methods for measuring or calculating these soil parameters are        |
| 2034 |            |          | identif          | ied in the last column of Appendix C. Table F:                              |
| 2035 |            | -        |                  | in the more contained of appending of function,                             |
| 2036 |            | 2) 1     | Institu          | tional controls or engineered barriers, pursuant to Subparts I and K        |
| 2037 |            |          | descril          | be applicable institutional controls and engineered harriers under a        |
| 2038 |            | r        | Tier 2           | evaluation: and                                                             |
| 2030 |            |          | 1101 2           |                                                                             |
| 2035 |            | 3) 1     | [ and i          | ise classification                                                          |
| 2040 |            | 5) 1     |                  |                                                                             |
| 2041 | <i>d</i> ) | Tovicol  | ogical           | -specific Information                                                       |
| 2042 | u)         | TOXICON  | ogicar           | -specific information                                                       |
| 2043 |            | 1) 7     | Tovice           | plagical gradific information is used to calculate Tier 2 remediation       |
| 2044 |            | 1)       | abioati          | ives for the following norometers, if applies her                           |
| 2045 |            | (        | objecti          | ives for the following parameters, if applicable.                           |
| 2040 |            |          | A )              | Oral Chronic Deference Dece (DfD evenesced in medles d);                    |
| 2047 |            | 1        | A)               | Oral Chromic Reference Dose ( $RiD_0$ , expressed in hig/kg-d);             |
| 2048 |            | r        | וח               | Oral Syladramia Defense Dese (DfD) - energy die marken d                    |
| 2049 |            | I        | В)               | Oral Subchronic Reference Dose ( $RID_s$ , expressed in mg/kg-d,            |
| 2050 |            |          |                  | shall be used for construction worker remediation objective                 |
| 2051 |            |          |                  | calculations);                                                              |
| 2052 |            |          | C)               |                                                                             |
| 2053 |            | (        | C)               | Oral Slope Factor (SF <sub>0</sub> , expressed in $(mg/kg-d)^{-1}$ );       |
| 2054 |            | -        |                  |                                                                             |
| 2055 |            | I        | D)               | Inhalation Unit Risk Factor (URF expressed in $(\mu g/m^2)^{-1}$ );         |
| 2056 |            |          | -                |                                                                             |
| 2057 |            | ł        | E)               | Inhalation Chronic Reference Concentration (RfC, expressed in               |
| 2058 |            |          |                  | mg/m <sup>°</sup> );                                                        |
| 2059 |            |          |                  |                                                                             |
| 2060 |            | I        | F)               | Inhalation Subchronic Reference Concentration (RfC <sub>s</sub> , expressed |
| 2061 |            |          |                  | in mg/m <sup>2</sup> , shall be used for construction worker remediation    |

2 C

| 2062 |         |         |            |              | objective calculations);                                                      |
|------|---------|---------|------------|--------------|-------------------------------------------------------------------------------|
| 2063 |         |         |            |              |                                                                               |
| 2064 |         |         |            | G)           | Inhalation Chronic Reference Dose ( $RtD_i$ , expressed in mg/kg-d);          |
| 2065 |         |         |            | <b>T T</b> \ |                                                                               |
| 2066 |         |         |            | H)           | Inhalation Subchronic Reference Dose (RfD <sub>is</sub> , expressed in mg/kg- |
| 2067 |         |         |            |              | d, shall be used for construction worker remediation objective                |
| 2068 |         |         |            |              | calculations); and                                                            |
| 2069 |         |         |            | -            |                                                                               |
| 2070 |         |         |            | I)           | Inhalation Slope Factor (SF <sub>i</sub> , expressed in $(mg/kg-d)^{-1}$ );   |
| 2071 |         |         |            |              |                                                                               |
| 2072 |         |         | 2)         | Toxico       | plogical information can be obtained by following the guidelines in           |
| 2073 |         |         |            | <u>OSWE</u>  | <u>R Directive 9285.7-53</u> from IRIS, as incorporated by reference in       |
| 2074 |         |         |            | Section      | n 742.210, or the program under which the remediation is being                |
| 2075 |         |         |            | perform      | ned.                                                                          |
| 2076 |         |         |            |              |                                                                               |
| 2077 |         | e)      | Chemi      | cal-spec     | cific Information                                                             |
| 2078 |         |         | Chemi      | cal-spec     | cific information used to calculate Tier 2 remediation objectives is          |
| 2079 |         |         | listed i   | n Apper      | ndix C, Table E.                                                              |
| 2080 |         |         |            |              |                                                                               |
| 2081 |         | f)      | Calcula    | ations       |                                                                               |
| 2082 |         | ,       | Calcula    | ating nu     | merical values for some parameters requires the use of equations              |
| 2083 |         |         | listed i   | n Appei      | ndix C, Tables Table A, or C, and L. The parameters that are                  |
| 2084 |         |         | calcula    | ted are      | listed in Appendix C, Tables B, and D, and M.                                 |
| 2085 |         |         |            |              |                                                                               |
| 2086 |         | (Sourc  | e: Ame     | nded at      | (36 Ill. Reg. , effective )                                                   |
| 2087 |         | `       |            |              |                                                                               |
| 2088 | Section | n 742.7 | 10 SSL     | Soil E       | quations                                                                      |
| 2089 |         |         |            |              |                                                                               |
| 2090 |         | a)      | This Se    | ection s     | ets forth the equations and parameters used to develop Tier 2 soil            |
| 2091 |         | )       | remedi     | ation ol     | biectives for the three exposure routes using the SSL approach.               |
| 2092 |         |         |            |              | -j                                                                            |
| 2093 |         | b)      | Soil In    | gestion      | Exposure Route                                                                |
| 2093 |         | 0)      |            | 805000       |                                                                               |
| 2091 |         |         | 1)         | Equation     | ons S1 through S3 form the basis for calculating Tier 2 remediation           |
| 2095 |         |         | -)         | objecti      | ves for the soil ingestion exposure route using the SSL approach              |
| 2020 |         |         |            | Equation     | on S1 is used to calculate soil remediation objectives for                    |
| 2097 |         |         |            | noncar       | cinogenic contaminants. Equations S2 and S3 are used to calculate             |
| 2020 |         |         |            | soil rer     | nediation objectives for carcinogenic contaminants for residential            |
| 2000 |         |         |            | nonula       | tions and industrial/commercial and construction worker                       |
| 2100 |         |         |            | popula       | tions respectively                                                            |
| 2101 |         |         |            | popula       | aons, respectively.                                                           |
| 2102 |         |         | 2)         | ForFa        | ustions \$1 through \$3 the \$\$1 default values cannot be modified           |
| 2103 |         |         | <i>2</i> ) | with a       | te specific information                                                       |
| ∠104 |         |         |            | with SI      | w-specific information.                                                       |

| 2105 |    |      |                                                                                                                 |                                               |
|------|----|------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 2106 | c) | Outd | Inhalation Exposure Route                                                                                       |                                               |
| 2107 |    |      | -                                                                                                               |                                               |
| 2108 |    | 1)   | Equations S4 through S16, S26                                                                                   | and S27 are used to calculate Tier 2 soil     |
| 2109 |    | 2    | emediation objectives for the o                                                                                 | outdoor inhalation exposure route using the   |
| 2110 |    |      | SL approach. To address this                                                                                    | exposure route, organic contaminants and      |
| 2111 |    |      | nercury must be evaluated sepa                                                                                  | arately from fugitive dust using their own    |
| 2112 |    |      | quations set forth in subsection                                                                                | (c)(2) and $(c)(3)$ of this Section.          |
| 2113 |    |      | espectively.                                                                                                    |                                               |
| 2114 |    |      | 1 2                                                                                                             |                                               |
| 2115 |    | 2)   | Organic Contaminants                                                                                            |                                               |
| 2116 |    | /    | 5                                                                                                               |                                               |
| 2117 |    |      | $\Delta$ Equations S4 through S <sup>2</sup>                                                                    | 10 are used to calculate Tier 2 soil          |
| 2118 |    |      | remediation objectives f                                                                                        | or organic contaminants and mercury           |
| 2119 |    |      | based on the outdoor inh                                                                                        | alation exposure route. Equation S4 is        |
| 2120 |    |      | used to calculate soil rer                                                                                      | nediation objectives for noncarcinogenic      |
| 2121 |    |      | organic contaminants in                                                                                         | soil for residential and                      |
| 2122 |    |      | industrial/commercial po                                                                                        | opulations. Equation S5 is used to            |
| 2123 |    |      | calculate soil remediatio                                                                                       | on objectives for noncarcinogenic organic     |
| 2124 |    |      | contaminants and mercu                                                                                          | irv in soil for construction worker           |
| 2125 |    |      | populations. Equation S                                                                                         | 36 is used to calculate soil remediation      |
| 2126 |    |      | objectives for carcinoge                                                                                        | nic organic contaminants in soil for          |
| 2127 |    |      | residential and industria                                                                                       | l/commercial populations. Equation S7 is      |
| 2128 |    |      | used to calculate soil rer                                                                                      | nediation objectives for carcinogenic         |
| 2129 |    |      | organic contaminants in                                                                                         | soil for construction worker populations.     |
| 2130 |    |      | Equations S8 through S                                                                                          | 10. S27 and S28 are used for calculating      |
| 2131 |    |      | numerical values for sor                                                                                        | ne of the parameters in Equations S4          |
| 2132 |    |      | through S7.                                                                                                     |                                               |
| 2133 |    |      | e de la companya de l |                                               |
| 2134 |    |      | B) For Equation S4, a nume                                                                                      | erical value for the Volatilization Factor    |
| 2135 |    |      | (VF) can be calculated in                                                                                       | n accordance with subsection $(c)(2)(F)$ of   |
| 2136 |    |      | this Section. The remain                                                                                        | ning parameters in Equation S4 have either    |
| 2137 |    |      | SSL default values listed                                                                                       | d in Appendix C. Table B or toxicological-    |
| 2138 |    |      | specific information (i.e                                                                                       | ., RfC), which can be obtained by             |
| 2139 |    |      | following the guidelines                                                                                        | in OSWER Directive 9285.7-53, as              |
| 2140 |    |      | incorporated by reference                                                                                       | te in Section 742.210 <del>from IRIS</del> or |
| 2141 |    |      | requested from the prog                                                                                         | ram under which the remediation is being      |
| 2142 |    |      | performed.                                                                                                      | · · · · · · · · · · · · · · · · · · ·         |
| 2143 |    |      | 1                                                                                                               |                                               |
| 2144 |    |      | F) For Equation S5, a nume                                                                                      | erical value for the Volatilization Factor    |
| 2145 |    |      | adjusted for Agitation (V                                                                                       | VF') can be calculated in accordance with     |
| 2146 |    |      | subsection $(c)(2)(G)$ of t                                                                                     | this Section. The remaining parameters in     |
| 2147 |    |      | Equation S5 have either                                                                                         | SSL default values listed in Appendix C.      |
|      |    |      | -                                                                                                               | 11 /                                          |

x

2 F

| 2148<br>2149<br>2150<br>2151<br>2152 |    | Table I<br>can be<br><u>9285.7</u><br>IRIS or<br>being p | B or toxicological-specific information (i.e., RfC), which<br>obtained <u>by following the guidelines in OSWER Directive</u><br>-53, as incorporated by reference in Section 742.210from<br>r requested from the program under which the remediation is<br>performed. |
|--------------------------------------|----|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2153                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2154                                 | D) | For Eq                                                   | uation S6, a numerical value for VF can be calculated in                                                                                                                                                                                                              |
| 2155                                 |    | accorda                                                  | ance with subsection $(c)(2)(F)$ of this Section. The                                                                                                                                                                                                                 |
| 2156                                 |    | remain                                                   | ing parameters in Equation S6 have either default values                                                                                                                                                                                                              |
| 2157                                 |    | listed in                                                | n Appendix C, Table B or toxicological-specific information                                                                                                                                                                                                           |
| 2158                                 |    | (i.e., U                                                 | RF), which can be obtained by following the guidelines in                                                                                                                                                                                                             |
| 2159                                 |    | <u>OSWE</u>                                              | R Directive 9285.7-53, as incorporated by reference in                                                                                                                                                                                                                |
| 2160                                 |    | Sectior                                                  | n 742.210 from IRIS or requested from the program under                                                                                                                                                                                                               |
| 2161                                 |    | which 1                                                  | the remediation is being performed.                                                                                                                                                                                                                                   |
| 2162                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2163                                 | E) | For Eq                                                   | uation S7, a numerical value for VF' can be calculated in                                                                                                                                                                                                             |
| 2164                                 |    | accorda                                                  | ance with subsection $(c)(2)(G)$ of this Section. The                                                                                                                                                                                                                 |
| 2165                                 |    | remain                                                   | ing parameters in Equation S7 have either default values                                                                                                                                                                                                              |
| 2166                                 |    | listed in                                                | n Appendix C, Table B or toxicological-specific information                                                                                                                                                                                                           |
| 2167                                 |    | (i.e., U                                                 | RF), which can be obtained by following the guidelines in                                                                                                                                                                                                             |
| 2168                                 |    | <u>OSWE</u>                                              | R Directive 9285.7-53, as incorporated by reference in                                                                                                                                                                                                                |
| 2169                                 |    | Section                                                  | n 742.210 from IRIS or requested from the program under                                                                                                                                                                                                               |
| 2170                                 |    | which                                                    | the remediation is being performed.                                                                                                                                                                                                                                   |
| 2171                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2172                                 | F) | The VI                                                   | F can be calculated for residential and industrial/commercial                                                                                                                                                                                                         |
| 2173                                 |    | populat                                                  | tions using one of the following equations based on the                                                                                                                                                                                                               |
| 2174                                 |    | inform                                                   | ation known about the contaminant source and receptor                                                                                                                                                                                                                 |
| 2175                                 |    | populat                                                  | tion:                                                                                                                                                                                                                                                                 |
| 2176                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2177                                 |    | i)                                                       | Equation S8, in conjunction with Equation S10, is used to                                                                                                                                                                                                             |
| 2178                                 |    |                                                          | calculate VF assuming an infinite source of contamination;                                                                                                                                                                                                            |
| 2179                                 |    |                                                          | or                                                                                                                                                                                                                                                                    |
| 2180                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2181                                 |    | ii)                                                      | If the area and depth of the contaminant source are known                                                                                                                                                                                                             |
| 2182                                 |    | ,                                                        | or can be estimated reliably, mass limit considerations may                                                                                                                                                                                                           |
| 2183                                 |    |                                                          | be used to calculate VF using Equation S26.                                                                                                                                                                                                                           |
| 2184                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2185                                 | G) | The VI                                                   | ' can be calculated for the construction worker populations                                                                                                                                                                                                           |
| 2186                                 | ,  | using o                                                  | ne of the following equations based on the information                                                                                                                                                                                                                |
| 2187                                 |    | known                                                    | about the contaminant source:                                                                                                                                                                                                                                         |
| 2188                                 |    |                                                          |                                                                                                                                                                                                                                                                       |
| 2189                                 |    | i)                                                       | Equation S9 is used to calculate VF' assuming an infinite                                                                                                                                                                                                             |
| 2190                                 |    | ,                                                        | source of contamination; or                                                                                                                                                                                                                                           |

2192 ii) If the area and depth of the contaminant source are known 2193 or can be estimated reliably, mass limit considerations may be used to calculate VF' using Equation S27. 2194 2195 3) Fugitive Dust 2196 2197 2198 Equations S11 through S16 are used to calculate Tier 2 soil A) remediation objectives using the SSL fugitive dust model for the 2199 outdoor inhalation exposure route. Equation S11 is used to 2200 2201 calculate soil remediation objectives for noncarcinogenic contaminants in fugitive dust for residential and 2202 2203 industrial/commercial populations. Equation S12 is used to calculate soil remediation objectives for noncarcinogenic 2204 contaminants in fugitive dust for construction worker populations. 2205 2206 Equation S13 is used to calculate soil remediation objectives for 2207 carcinogenic contaminants in fugitive dust for residential and industrial/commercial populations. Equation S14 is used to 2208 2209 calculate soil remediation objectives for carcinogenic contaminants in fugitive dust for construction worker populations. Equations 2210 2211 S15 and S16 are used for calculating numerical quantities for some of the parameters in Equations S11 through S14. 2212 2213 2214 B) For Equation S11, a numerical value can be calculated for the Particulate Emission Factor (PEF) using Equation S15. This 2215 2216 equation relies on various input parameters from a variety of sources. The remaining parameters in Equation S11 have either 2217 SSL default values listed in Appendix C, Table B or toxicological-2218 2219 specific information (i.e., RfC), which can be obtained by following the guidelines in OSWER Directive 9285.7-53, as 2220 incorporated by reference in Section 742.210from IRIS or 2221 requested from the program under which the remediation is being 2222 performed. 2223 2224 2225 C) For Equation S12, a numerical value for the Particulate Emission 2226 Factor for Construction Worker (PEF') can be calculated using 2227 Equation S16. The remaining parameters in Equation S12 have either SSL default values listed in Appendix C, Table B or 2228 2229 toxicological-specific information (i.e., RfC), which can be obtained by following the guidelines in OSWER Directive 9285.7-2230 53, as incorporated by reference in Section 742.210from IRIS or 2231 requested from the program under which the remediation is being 2232 performed. 2233

t e

| 2234 |    |         |           |                                                                                                                                                             |
|------|----|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2235 |    |         | D)        | For Equation S13, a numerical value for PEF can be calculated                                                                                               |
| 2236 |    |         | ,         | using Equation S15. The remaining parameters in Equation S13                                                                                                |
| 2237 |    |         |           | have either default values listed in Appendix C. Table B or                                                                                                 |
| 2238 |    |         |           | toxicological-specific information (i.e., URF), which can be                                                                                                |
| 2239 |    |         |           | obtained by following the guidelines in OSWER Directive 9285.7-                                                                                             |
| 2240 |    |         |           | 53, as incorporated by reference in Section 742.210 from IRIS or                                                                                            |
| 2241 |    |         |           | requested from the program under which the remediation is being                                                                                             |
| 2242 |    |         |           | performed.                                                                                                                                                  |
| 2243 |    |         |           | F                                                                                                                                                           |
| 2244 |    |         | E)        | For Equation S14, a numerical value for PEF' can be calculated                                                                                              |
| 2245 |    |         | 2)        | using Equation S16 The remaining parameters in Equation S14                                                                                                 |
| 2246 |    |         |           | have either default values listed in Appendix C. Table B or                                                                                                 |
| 2247 |    |         |           | toxicological-specific information (i.e. URF) which can be                                                                                                  |
| 2248 |    |         |           | obtained by following the guidelines in OSWER Directive 9285 7-                                                                                             |
| 2249 |    |         |           | 53 as incorporated by reference in Section 742 210 from IRIS or                                                                                             |
| 2250 |    |         |           | requested from the program under which the remediation is being                                                                                             |
| 2250 |    |         |           | nerformed                                                                                                                                                   |
| 2251 |    |         |           | portorniou.                                                                                                                                                 |
| 2252 | d) | Soil C  | omnone    | ent of the Groundwater Ingestion Exposure Route                                                                                                             |
| 2255 | u) | The Ti  | er 2 ren  | nediation objective for the soil component of the groundwater                                                                                               |
| 2255 |    | ingesti | on evnc   | source route can be calculated using one of the following equations                                                                                         |
| 2255 |    | hased   | on the ju | nformation known about the contaminant source and recentor                                                                                                  |
| 2250 |    | nonula  | tion.     | mormation known about the containmant source and receptor                                                                                                   |
| 2257 |    | popula  |           |                                                                                                                                                             |
| 2250 |    | 1)      | Fausti    | on \$17 is used to colculate the remediation objective assuming on                                                                                          |
| 2259 |    | 1)      | infinite  | on S17 is used to calculate the remediation objective assuming an                                                                                           |
| 2200 |    |         | mmm       |                                                                                                                                                             |
| 2201 |    |         | A)        | The numerical quantities for four parameters in Equation \$17 the                                                                                           |
| 2202 |    |         | A)        | The numerical quantities for four parameters in Equation $S17$ , the Target Soil L apphate Concentration (C ). Soil Water                                   |
| 2205 |    |         |           | Partition Dartion Coefficient $(V_{\rm A})$ for non-ionizing argonics. We ter                                                                               |
| 2204 |    |         |           | <u>Faltution</u> $ration$ Coefficient ( $K_d$ ) for non-formizing organics, water-                                                                          |
| 2203 |    |         |           | The Soli Polosity Theta $(\Theta_w)$ and All-Filled Soli Polosity<br>Theta $(\Theta_w)$ are calculated using Equations S18, S10, S20 and S21.               |
| 2200 |    |         |           | Theta <sub>a</sub> $(\Theta_a)$ , are calculated using Equations 518, 519, 520 and 521,<br>respectively. Equations 522, 522, 524 and 525 are also needed to |
| 2207 |    |         |           | respectively. Equations 522, 525, 524 and 525 are also needed to                                                                                            |
| 2200 |    |         |           | dependent <i>K</i> values for ionizing angening on he calculated using                                                                                      |
| 2209 |    |         |           | dependent $K_d$ values for formizing organics can be calculated using Equation S10 and the nU dependent $K_d$ values in Amountin C                          |
| 2270 |    |         |           | Equation S19 and the pH-dependent $K_{oc}$ values in Appendix C,                                                                                            |
| 2271 |    |         |           | 1 auto 1.                                                                                                                                                   |
| 2212 |    |         | D)        | The remaining neurometers in Equation 617 and Hannaha L                                                                                                     |
| 2213 |    |         | с)        | Constant (III) a chamical analification S1/ are Henry's Law                                                                                                 |
| 2274 |    |         |           | Table E and Dry Sail Dault Dauait (1) a chemical specific value listed in Appendix C,                                                                       |
| 2275 |    |         |           | Table E and Dry Soll Bulk Density ( $\rho_b$ ), a site-specific based value                                                                                 |
| 2276 |    |         |           | listed in Appendix C, Table B.                                                                                                                              |

4.

5 g g

| 2277 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2278 |               | C)                 | The default value for $GW_{obi}$ is the Tier 1 groundwater objective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2279 |               | - /                | For chemicals for which there is no Tier 1 groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2280 |               |                    | remediation objective, the value for GW <sub>abi</sub> shall be the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2281 |               |                    | concentration determined according to the procedures specified in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2201 |               |                    | 35 Ill Adm Code 620 Subpart F. As an alternative to using Tier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2202 |               |                    | 1 groundwater remediation objectives or concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2203 |               |                    | determined according to the procedures checklichting 25 III. A dee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2204 |               |                    | Code (20. Submet E. CW) were be developed in 55 m. Adm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2285 |               |                    | Code 620, Subpart $F_{-}$ . G $W_{obj}$ may be developed using Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2286 |               |                    | R25 and R26, if approved institutional controls are in place as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2287 |               |                    | required in Subpart J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2288 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2289 |               | 2) If the          | e area and depth of the contaminant source are known or can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2290 |               | estin              | nated reliably, mass limit considerations may be used to calculate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2291 |               | reme               | ediation objective for this exposure route using Equation S28. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2292 |               | parai              | meters in Equation S28 have default values listed in Appendix C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2293 |               | Tabl               | e B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2294 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2295 | (Sourc        | ce: Amended        | at 36 Ill. Reg., effective )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2296 | × ×           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2297 | Section 742.7 | 12 SSL Soil        | Gas Equation for the Outdoor Inhalation Exposure Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2298 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2299 | a)            | This Section       | usets forth the equation and narameters used to develop Tier 2 soil gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2300 | щŗ            | remediation        | objectives for the outdoor inhalation exposure route using the SSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2301 |               | approach           | objectives for the outdoor minalation exposure route using the oor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2301 |               | <u>approach.</u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2302 | b)            | Equation S3        | a is used to coloulate Tier 2 soil gas remediation objectives for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2303 | <u>0)</u>     | <u>Equation 33</u> | <u>O is used to calculate Tiel 2 soli gas remediation objectives for the</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2304 |               |                    | and the second strength is a second strength in the strength in the strength is a second strength is a second strength in the strength in the strength is a second strength in the strength in the strength is a second strength in the strength is a second strength in the strength is a second strength in the |
| 2305 |               | construction       | i worker populations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2306 | ``            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2307 | <u>c)</u>     | Equations S        | 4 through \$16, \$26 and \$27, which calculate Tier 2 soil remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2308 |               | objectives as      | s described in Section 742.710(c), form the basis for developing the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2309 |               | Tier 2 soil g      | as remediation objectives for the outdoor inhalation exposure route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2310 |               | using the SS       | <u>L model.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2311 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2312 | <u>d)</u>     | The remaining      | ng parameters used to calculate Equation S30 are listed in Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2313 |               | C, Table B,        | except for Dimensionless Henry's Law Constant (25°C), a chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2314 |               | specific valu      | le listed in Appendix C, Table E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2315 |               | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2316 | (Sourc        | e: Added at a      | 36 Ill. Reg. , effective )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2317 | (             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2318 | Section 742.7 | 15 RBCA S          | oil Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2319 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ų

| 2320 | a) | This S  | ection p       | resents tl | he RBCA model and describes the equations and                        |
|------|----|---------|----------------|------------|----------------------------------------------------------------------|
| 2321 |    | parame  | eters use      | ed to dev  | elop Tier 2 soil remediation objectives.                             |
| 2322 |    |         | 0              |            |                                                                      |
| 2323 | b) | Ingesti | on, <u>Out</u> | door Inha  | alation, and Dermal Contact                                          |
| 2324 |    |         |                |            |                                                                      |
| 2325 |    | 1)      | The tw         | o sets of  | equations in subsections (b)(2) and (b)(3) of this Section           |
| 2326 |    |         | shall b        | e used to  | generate Tier 2 soil remediation objectives for the                  |
| 2327 |    |         | combin         | ned inges  | tion, outdoor inhalation, and dermal contact with soil               |
| 2328 |    |         | exposi         | ire routes |                                                                      |
| 2329 |    |         |                |            |                                                                      |
| 2330 |    | 2)      | Combi          | ned Expo   | osure Routes of Soil Ingestion, Outdoor Inhalation of                |
| 2331 |    |         | Vapors         | s and Par  | ticulates, and Dermal Contact with Soil                              |
| 2332 |    |         |                |            |                                                                      |
| 2333 |    |         | A)             | Equation   | ns R1 and R2 form the basis for deriving Tier 2                      |
| 2334 |    |         |                | remedia    | tion objectives for the set of equations that evaluates the          |
| 2335 |    |         |                | combine    | ed exposure routes of soil ingestion, outdoor inhalation of          |
| 2336 |    |         |                | vapors a   | ind particulates, and dermal contact with soil using the             |
| 2337 |    |         |                | RBCA a     | upproach. Equation R1 is used to calculate soil remediation          |
| 2338 |    |         |                | objectiv   | es for carcinogenic contaminants. Equation R2 is used to             |
| 2339 |    |         |                | calculate  | e soil remediation objectives for noncarcinogenic                    |
| 2340 |    |         |                | contami    | nants. Soil remediation objectives for the outdoor                   |
| 2341 |    |         |                | inhalatic  | on exposure <del>ambient vapor inhalation (outdoor)</del> route from |
| 2342 |    |         |                | subsurfa   | ice soils must also be calculated in accordance with the             |
| 2343 |    |         |                | procedu    | res outlined in subsection (b)(3) of this Section and                |
| 2344 |    |         |                | compare    | ed to the values generated from Equations R1 or R2. The              |
| 2345 |    |         |                | smaller    | value (i.e., R1 and R2 compared to R7 and R8                         |
| 2346 |    |         |                | respectiv  | velv) from these calculations is the Tier 2 soil remediation         |
| 2347 |    |         |                | objectiv   | e for the combined exposure routes of soil ingestion.                |
| 2348 |    |         |                | outdoor    | inhalation and dermal contact with soil                              |
| 2349 |    |         |                | 0444001    |                                                                      |
| 2350 |    |         | B)             | In Equat   | tion R1 numerical values are calculated for two                      |
| 2351 |    |         | 2)             | paramet    | ers.                                                                 |
| 2352 |    |         |                | purumer    |                                                                      |
| 2352 |    |         |                | i) 7       | The volatilization factor for surficial soils (VF) using             |
| 2354 |    |         |                |            | Equations R3 and R4: and                                             |
| 2355 |    |         |                | 1          |                                                                      |
| 2355 |    |         |                | ii) 7      | The volatilization factor for surficial subsurface soils             |
| 2350 |    |         |                | ri) r      | regarding particulates (VF, using Equation R5)                       |
| 2358 |    |         |                | 1          | ogaranne particulates (vi pushte Equation 105).                      |
| 2350 |    |         | $(\mathbf{C})$ | VF use     | s Equations R3 and R4 to derive a numerical value                    |
| 2359 |    |         | 0)             | Faustion   | n R3 requires the use of Equation R6. Both equations must            |
| 2360 |    |         |                | he used    | to calculate the VE. The lowest calculated value from                |
| 2301 |    |         |                | these er   | ustions must be substituted into Equation D1                         |
| 2002 |    |         |                | mese eq    | uanons musi de sudsmuleu milo equation KI.                           |

| 2363                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2364                                                                                                                                                                 | D)                                                                      | The remaining parameters in Equation R1 have either default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2365                                                                                                                                                                 | ,                                                                       | values listed in Appendix C, Table D or toxicological-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2366                                                                                                                                                                 |                                                                         | information (i.e., $SF_0$ , $SF_i$ ), which can be obtained by following the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2367                                                                                                                                                                 |                                                                         | guidelines in OSWER Directive 9285.7-53, as incorporated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2368                                                                                                                                                                 |                                                                         | reference in Section 742.210 from IRIS or requested from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2369                                                                                                                                                                 |                                                                         | program under which the remediation is being performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2370                                                                                                                                                                 |                                                                         | program ander which are remounded to being performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2370                                                                                                                                                                 | F)                                                                      | For Equation R2 the parameters VE and VE are calculated The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2371                                                                                                                                                                 | L)                                                                      | remaining parameters in Equation R2 have either default values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2372                                                                                                                                                                 |                                                                         | listed in Appendix C. Table D or toxicological-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2373                                                                                                                                                                 |                                                                         | information (i.e. RfD, RfD, which can be obtained by following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2374                                                                                                                                                                 |                                                                         | the guidelines in OSWEP Directive 0285.7.53 as incorporated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2375                                                                                                                                                                 |                                                                         | reference in Section 742 210 from IBIS or requested from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2370                                                                                                                                                                 |                                                                         | regreen under which the remediation is being performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2377                                                                                                                                                                 |                                                                         | program under which the remediation is being performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2378                                                                                                                                                                 | E)                                                                      | For chemicals other than increanics which do not have default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2379                                                                                                                                                                 | 1)                                                                      | values for the dermal absorption factor (PAE) in Appendix C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2380                                                                                                                                                                 |                                                                         | Table D a dormal absorption factor of 0.5 shell be used for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2301                                                                                                                                                                 |                                                                         | Equations D1 and D2. For increasing dormal charmetics may be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2302                                                                                                                                                                 |                                                                         | Equations K1 and K2. For morganics, definal absorption may be discovered dis |
| 2383<br>2284                                                                                                                                                         |                                                                         | disregarded (i.e., $RAF_d = 0$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2204                                                                                                                                                                 | 2 Outd                                                                  | on Inholotion Evenopues Doute Ambient Vener Inholotion (autilian)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2385                                                                                                                                                                 | 3) <u>Outdo</u>                                                         | oor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2385<br>2386<br>2387                                                                                                                                                 | 3) <u>Outdo</u><br>route                                                | oor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)<br>from Subsurface Soils (soil below one meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2385<br>2386<br>2387                                                                                                                                                 | 3) <u>Outdo</u><br>route                                                | oor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)<br>from Subsurface Soils (soil below one meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2385<br>2386<br>2387<br>2388<br>2388                                                                                                                                 | 3) <u>Outdo</u><br>route<br>A)                                          | <u>oor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</u><br>from Subsurface Soils (soil below one meter)<br>Equations R7 and R8 form the basis for deriving Tier 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2385<br>2386<br>2387<br>2388<br>2389<br>2300                                                                                                                         | 3) <u>Outde</u><br>route<br>A)                                          | bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)<br>from Subsurface Soils (soil below one meter)<br>Equations R7 and R8 form the basis for deriving Tier 2<br>remediation objectives for the <u>outdoor inhalation exposureambient</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2385<br>2386<br>2387<br>2388<br>2389<br>2390                                                                                                                         | 3) <u>Outdo</u><br>route<br>A)                                          | <u>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</u><br>from Subsurface Soils (soil below one meter)<br>Equations R7 and R8 form the basis for deriving Tier 2<br>remediation objectives for the <u>outdoor inhalation exposureambient</u><br>vapor inhalation (outdoor) route from subsurface soils using the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391                                                                                                         | 3) <u>Outdo</u><br>route<br>A)                                          | bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)<br>from Subsurface Soils (soil below one meter)<br>Equations R7 and R8 form the basis for deriving Tier 2<br>remediation objectives for the <u>outdoor inhalation exposureambient</u><br>vapor inhalation (outdoor) route from subsurface soils using the<br>RBCA approach. Equation R7 is used to calculate soil remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392                                                                                                 | 3) <u>Outde</u><br>route<br>A)                                          | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the <u>outdoor inhalation exposureambient</u></li> <li>vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2390<br>2391<br>2392<br>2393                                                                                 | 3) <u>Outde</u><br>route<br>A)                                          | <ul> <li><u>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</u></li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the <u>outdoor inhalation exposureambient</u></li> <li>vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394                                                                                 | 3) <u>Outdo</u><br>route<br>A)                                          | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the outdoor inhalation exposureambient</li> <li>vapor inhalation (outdoor) route from subsurface soils using the</li> <li>RBCA approach. Equation R7 is used to calculate soil remediation</li> <li>objectives for carcinogenic contaminants. Equation R8 is used to</li> <li>calculate soil remediation objectives for noncarcinogenic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395                                                                         | 3) <u>Outde</u> route<br>A)                                             | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the outdoor inhalation exposureambient</li> <li>vapor inhalation (outdoor) route from subsurface soils using the</li> <li>RBCA approach. Equation R7 is used to calculate soil remediation</li> <li>objectives for carcinogenic contaminants. Equation R8 is used to</li> <li>calculate soil remediation objectives for noncarcinogenic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396                                                                 | 3) <u>Outde</u> route<br>A)<br>B)                                       | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the <u>outdoor inhalation exposureambient</u> vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397                                                 | 3) <u>Outde</u> route<br>A)<br>B)                                       | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the outdoor inhalation exposureambient</li> <li>vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398                                                 | 3) <u>Outde</u><br>route<br>A)<br>B)                                    | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the outdoor inhalation exposureambient</li> <li>vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398<br>2399                                         | <ul><li>3) <u>Outder route</u></li><li>A)</li><li>B)</li></ul>          | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the <u>outdoor inhalation exposureambient</u> vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398<br>2399<br>2400                                 | <ul><li>3) <u>Outder route</u></li><li>A)</li><li>B)</li></ul>          | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor)</li> <li>from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2</li> <li>remediation objectives for the outdoor inhalation exposureambient</li> <li>vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on input parameters from a variety of sources.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398<br>2399<br>2400<br>2401                         | 3) <u>Outder route</u><br>A)<br>B)                                      | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor) from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the <u>outdoor inhalation exposureambient</u> vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on input parameters from a variety of sources.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398<br>2399<br>2400<br>2401<br>2402                 | <ul> <li>3) Outdo route</li> <li>A)</li> <li>B)</li> <li>C)</li> </ul>  | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor) from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the <u>outdoor inhalation exposureambient</u> vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on input parameters from a variety of sources.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398<br>2399<br>2400<br>2401<br>2402<br>2403         | <ul> <li>3) Outder route</li> <li>A)</li> <li>B)</li> <li>C)</li> </ul> | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor) from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the <u>outdoor inhalation exposureambient</u> vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on input parameters from a variety of sources.</li> <li>The noncarcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for air (RBSL<sub>air</sub>) and respectively.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2384<br>2385<br>2386<br>2387<br>2388<br>2389<br>2390<br>2391<br>2392<br>2393<br>2394<br>2395<br>2396<br>2397<br>2398<br>2399<br>2400<br>2401<br>2402<br>2403<br>2404 | <ul> <li>3) Outder route</li> <li>A)</li> <li>B)</li> <li>C)</li> </ul> | <ul> <li>bor Inhalation Exposure RouteAmbient Vapor Inhalation (outdoor) from Subsurface Soils (soil below one meter)</li> <li>Equations R7 and R8 form the basis for deriving Tier 2 remediation objectives for the <u>outdoor inhalation exposureambient</u> vapor inhalation (outdoor) route from subsurface soils using the RBCA approach. Equation R7 is used to calculate soil remediation objectives for carcinogenic contaminants. Equation R8 is used to calculate soil remediation objectives for noncarcinogenic contaminants.</li> <li>For Equation R7, the carcinogenic risk-based screening level for air (RBSL<sub>air</sub>) and the volatilization factor for soils below one meter to ambient air (VF<sub>samb</sub>) have numerical values that are calculated using Equations R9 and R11, respectively. Both equations rely on input parameters from a variety of sources.</li> <li>The noncarcinogenic risk-based screening level for air (RBSL<sub>air</sub>) in Equation factor for soils below one meter to ambient are variety of sources.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 2406        |           |                                                                                           |
|-------------|-----------|-------------------------------------------------------------------------------------------|
| 2407        | c)        | Soil Component of the Groundwater Ingestion Exposure Route                                |
| 2408        | ,         |                                                                                           |
| 2409        |           | 1) Equation R12 forms the basis for deriving Tier 2 remediation objectives                |
| 2410        |           | for the soil component of the groundwater ingestion exposure route using                  |
| 2411        |           | the RBCA approach. The parameters, groundwater at the source                              |
| 2412        |           | $(GW_{source})$ and Leaching Factor (LF <sub>sw</sub> ), have numerical values that are   |
| 2413        |           | calculated using Equations R13 and R14, respectively.                                     |
| 2414        |           |                                                                                           |
| 2415        |           | 2) Equation R13 requires numerical values that are calculated using Equation              |
| 2416        |           | R15.                                                                                      |
| 2417        |           |                                                                                           |
| 2418        |           | 3) Equation R14 requires numerical values that are calculated using                       |
| 2419        |           | Equations R21, R22, and R24. For non-ionizing organics, the Soil Water                    |
| 2420        |           | Sorption Coefficient ( $k_0$ ) shall be calculated using Equation R20. For                |
| 2421        |           | ionizing organics and inorganics, the values for $f_{k}$ are listed in Appendix           |
| 2422        |           | C. Tables I and J. respectively. The pH-dependent k <sub>e</sub> values for ionizing      |
| 2423        |           | organics can be calculated using Equation R20 and the pH dependent K <sub>oc</sub>        |
| 2424        |           | values in Appendix C. Table I. The remaining parameters in Equation                       |
| 2425        |           | R14 are field measurements or default values listed in Appendix C. Table                  |
| 2426        |           | D.                                                                                        |
| 2427        |           |                                                                                           |
| 2428        | d)        | The default value for GW <sub>comp</sub> is the Tier 1 groundwater remediation objective. |
| 2429        |           | For chemicals for which there is no Tier 1 groundwater remediation objective, the         |
| 2430        |           | value for GW <sub>comp</sub> shall be the concentration determined according to the       |
| 2431        |           | procedures specified in 35 III. Adm. Code 620. Subpart F. As an alternative to            |
| 2432        |           | using the above concentrations, $GW_{comp}$ may be developed using Equations R25          |
| 2433        |           | and R26. if approved institutional controls are in place as may be required in            |
| 2434        |           | Subpart J.                                                                                |
| 2435        |           | 1                                                                                         |
| 2436        | (Sourc    | e: Amended at 36 Ill. Reg., effective                                                     |
| 2437        | × ·       |                                                                                           |
| 2438 Sectio | n 742.7   | 17 J&E Soil Gas Equations for the Indoor Inhalation Exposure Route                        |
| 2439        |           |                                                                                           |
| 2440        | <u>a)</u> | This Section sets forth the equations and parameters to be used to develop Tier 2         |
| 2441        |           | soil gas remediation objectives for the indoor inhalation exposure route using the        |
| 2442        |           | modified J&E model.                                                                       |
| 2443        |           |                                                                                           |
| 2444        | <u>b)</u> | Equations J&E1 and J&E2 calculate, for carcinogens and noncarcinogens,                    |
| 2445        |           | respectively, an acceptable concentration of the contaminant of concern in indoor         |
| 2446        |           | air that adequately protects humans who inhale this air. Equation J&E3 converts           |
| 2447        |           | indoor air concentrations from parts per million volume to milligrams per cubic           |
| 2448        |           | meter.                                                                                    |

| 2449 |            |                                                                                                                                                                                             |
|------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2450 | c)         | Equation J&E4 calculates an acceptable concentration of the contaminant of                                                                                                                  |
| 2451 | - <u></u>  | concern in the soil gas at the source of contamination. This calculation is made                                                                                                            |
| 2452 |            | using:                                                                                                                                                                                      |
| 2453 |            | <u></u>                                                                                                                                                                                     |
| 2454 |            | 1) an attenuation factor developed in accordance with Equations I&F7                                                                                                                        |
| 2455 |            | through 18: and                                                                                                                                                                             |
| 2456 |            | <u>unough ro, unu</u>                                                                                                                                                                       |
| 2457 |            | 2) the acceptable concentration of the contaminant of concern in indoor air                                                                                                                 |
| 2458 |            | calculated in accordance with Equation 1&F1 (for carcinogens) or 1&F2                                                                                                                       |
| 2459 |            | (for noncarcinogens)                                                                                                                                                                        |
| 2460 |            | (101 honouromogens).                                                                                                                                                                        |
| 2460 | d)         | The attenuation factor (Equation $1\&E7$ or $1\&E8$ ) accounts for the following                                                                                                            |
| 2462 | <u>u</u> ) | nrocesses:                                                                                                                                                                                  |
| 2462 |            |                                                                                                                                                                                             |
| 2403 |            | 1) Migration of contaminants from the source unwards through the vadage                                                                                                                     |
| 2404 |            | <u>1)</u> <u>Wingration of containmants from the source upwards through the vadose</u>                                                                                                      |
| 2405 |            | <u>2011e.</u>                                                                                                                                                                               |
| 2400 |            | 2) Migration of contaminants through the contam filled creaks in the clab on                                                                                                                |
| 2407 |            | 2) <u>Wingration of containmains through the earthen fined cracks in the stab-on-</u><br>grade or becoment floor and wells; and                                                             |
| 2408 |            | grade of basement noor and wans, and                                                                                                                                                        |
| 2409 |            | 2) Mixing of the contominants with air incide the building                                                                                                                                  |
| 2470 |            | <u>5)</u> <u>Mixing of the containmants with all miside the building.</u>                                                                                                                   |
| 2471 | 2)         | Equation IRE7 is used when the mode of conteminent transment is both diffusion                                                                                                              |
| 2472 | <u>e</u> ] | Equation $J \approx E/Is$ used when the mode of contaminant transport is both diffusion<br>and advaction. In this geometric the Q value equals $82.22 \text{ cm}^3/\text{cos}$ as described |
| 2475 |            | and advection. In this scenario, the Q <sub>soil</sub> value equals 85.55 cm /sec as described                                                                                              |
| 2474 |            | <u>III Section 742.303.</u>                                                                                                                                                                 |
| 2475 | 6          | Equation 10-EQ is used when the used a first structure to 1:00 and 1                                                                                                                        |
| 2470 | <u>1)</u>  | Equation J&E8 is used when the mode of contaminant transport is diffusion only.                                                                                                             |
| 2477 |            | In this scenario, the Q <sub>soil</sub> value equals 0.0 cm <sup>2</sup> /sec as described in Section                                                                                       |
| 2478 |            | <u></u>                                                                                                                                                                                     |
| 2479 | ``         |                                                                                                                                                                                             |
| 2480 | g)         | Equations J&E9a through J&E18 calculate input parameters for either Equation                                                                                                                |
| 2481 |            | J&E / or J&E8 (the equations used to calculate an attenuation factor). These                                                                                                                |
| 2482 |            | equations assume there are "n" different soil layers between the source of the                                                                                                              |
| 2483 |            | contamination and the floor of the building. Equations J&E11, 16, 17 and 18 shall                                                                                                           |
| 2484 |            | be used to calculate the needed parameters for each of the n layers (the general                                                                                                            |
| 2485 |            | soil layer is referred to as soil layer "i" and $i = 1, 2,, n$ ). Equations J&E16, 17,                                                                                                      |
| 2486 |            | and 18 shall also be used to calculate needed parameters for the soil in the cracks                                                                                                         |
| 2487 |            | of the floor of the building (it is through these cracks that contaminants flow from                                                                                                        |
| 2488 |            | the subsurface into the building).                                                                                                                                                          |
| 2489 |            |                                                                                                                                                                                             |

| 2490 | h)            | The det           | fault re         | presentative subsurface temperature for Henry's Law Constant is                                 |
|------|---------------|-------------------|------------------|-------------------------------------------------------------------------------------------------|
| 2491 |               | 13°C.             | This va          | alue shall be used, as appropriate, in all calculations needed to                               |
| 2492 |               | represe           | nt the s         | system by which contaminants migrate through the subsurface.                                    |
| 2493 |               | <u>.</u>          |                  | ······································                                                          |
| 2494 | i)            | The cal           | culated          | d soil gas remediation objective shall be compared with the saturated                           |
| 2495 |               | vapor c           | oncent           | ration ( $C_v^{sat}$ , Equation J&E6b) for each volatile chemical. The                          |
| 2496 |               | calcula           | ted $C_v^{s}$    | <sup>at</sup> shall use the default representative subsurface temperature                       |
| 2497 |               | specifie          | ed in si         | ibsection (g). If the calculated soil gas remediation objective is                              |
| 2498 |               | greater           | than C           | $c_{x}^{\text{sat}}$ , then $C_{y}^{\text{sat}}$ is used as the soil gas remediation objective. |
| 2499 |               | <u> </u>          |                  | <u>, , , , , , , , , , , , , , , , , , , </u>                                                   |
| 2500 | i)            | The cal           | culated          | soil gas remediation objective shall be compared to concentrations                              |
| 2501 | <i>علي</i> لي | of soil           | gas col          | lected at a depth at least 3 feet below ground surface and above the                            |
| 2502 |               | saturate          | ed zone          | Let a valid sample cannot be collected a soil gas sampling plan                                 |
| 2503 |               | shall be          | e appro          | ved by the Agency under Tier 3                                                                  |
| 2504 |               | <u>011011 0 0</u> | <u>appro</u>     | ved of the right funder file 5.                                                                 |
| 2505 | (Sour         | e. Adde           | ed at 36         | 5 III Reg effective )                                                                           |
| 2506 | (2044)        |                   | <i>a a b b c</i> | , ini itogi)                                                                                    |
| 2507 |               | SUI               | BPAR             | TH: TIER 2 GROUNDWATER EVALUATION                                                               |
| 2508 |               |                   |                  |                                                                                                 |
| 2509 | Section 742.8 | 805 Tier          | 2 Gro            | undwater Remediation Objectives                                                                 |
| 2510 |               |                   | - 010            |                                                                                                 |
| 2511 | a)            | To deve           | elon a s         | proundwater remediation objective under this Section that exceeds                               |
| 2512 | ~)            | the app           | licable          | Tier 1 groundwater remediation objective or for which there is no                               |
| 2513 |               | Tier I g          | roundy           | vater remediation objective a person may request approval from the                              |
| 2514 |               | Agency            | if the           | person has performed the following.                                                             |
| 2515 |               | Berrej            |                  | person ma performed die fono milg.                                                              |
| 2516 |               | 1)                | Identif          | ied the horizontal and vertical extent of groundwater for which the                             |
| 2517 |               | -)                | Tier 2           | groundwater remediation objective is sought.                                                    |
| 2518 |               |                   |                  |                                                                                                 |
| 2519 |               | 2)                | Taken            | corrective action, to the maximum extent practicable to remove any                              |
| 2520 |               | _/                | free pr          | oduct:                                                                                          |
| 2521 |               |                   | <b>I</b>         | ,                                                                                               |
| 2522 |               | 3)                | Using            | Equation R26 in accordance with Section 742.810, demonstrated                                   |
| 2523 |               | ,                 | that the         | e concentration of any contaminant of concern in groundwater will                               |
| 2524 |               |                   | meet:            |                                                                                                 |
| 2525 |               |                   |                  |                                                                                                 |
| 2526 |               |                   | A)               | The applicable Tier 1 groundwater remediation objective at the                                  |
| 2527 |               |                   | ,                | point of human exposure: or                                                                     |
| 2528 |               |                   |                  |                                                                                                 |
| 2529 |               |                   | B)               | For any contaminant of concern for which there is no Tier 1                                     |
| 2530 |               |                   | ,                | groundwater remediation objective. the concentration determined                                 |
| 2531 |               |                   |                  | according to the procedures specified in 35 Ill. Adm. Code 620 at                               |
| 2532 |               |                   |                  | the point of human exposure. A person may request the Agency to                                 |

| 2533 |    |         | provide these concentrations or may propose these concentrations              |
|------|----|---------|-------------------------------------------------------------------------------|
| 2534 |    |         | under Subpart I;                                                              |
| 2535 |    |         |                                                                               |
| 2536 |    | 4)      | Using Equation R26 in accordance with Section 742.810, demonstrated           |
| 2537 |    |         | that the concentration of any contaminant of concern in groundwater           |
| 2538 |    |         | within the minimum or designated maximum setback zone of an existing          |
| 2539 |    |         | potable water supply well will meet the applicable Tier 1 groundwater         |
| 2540 |    |         | remediation objective or, if there is no Tier 1 groundwater remediation       |
| 2541 |    |         | objective, the concentration determined according to the procedures           |
| 2542 |    |         | specified in 35 III. Adm. Code 620. A person may request the Agency to        |
| 2543 |    |         | provide these concentrations or may propose these concentrations under        |
| 2544 |    |         | Subpart I;                                                                    |
| 2545 |    |         |                                                                               |
| 2546 |    | 5)      | Using Equation R26 in accordance with Section 742.810, demonstrated           |
| 2547 |    |         | that the concentration of any contaminant of concern in groundwater           |
| 2548 |    |         | discharging into a surface water will meet the applicable water quality       |
| 2549 |    |         | standard under 35 Ill. Adm. Code 302;                                         |
| 2550 |    |         |                                                                               |
| 2551 |    | 6)      | Demonstrated that the source of the release is not located within the         |
| 2552 |    |         | minimum or designated maximum setback zone or within a regulated              |
| 2553 |    |         | recharge area of an existing potable water supply well; and                   |
| 2554 |    |         |                                                                               |
| 2555 |    | 7)      | If the selected corrective action includes an engineered barrier as set forth |
| 2556 |    |         | in Subpart K to minimize migration of contaminantscontaminant of              |
| 2557 |    |         | concern from the soil to the groundwater, demonstrated that the               |
| 2558 |    |         | engineered barrier will remain in place for post-remediation land use         |
| 2559 |    |         | through an institutional control as set forth in Subpart J.                   |
| 2560 |    |         |                                                                               |
| 2561 | b) | A grou  | Indwater remediation objective that exceeds the water solubility of that      |
| 2562 |    | chemic  | cal (refer to Appendix C, Table E for solubility values) is not allowed.      |
| 2563 |    |         |                                                                               |
| 2564 | c) | The co  | ontaminants of concern for which a Tier 1 remediation objective has been      |
| 2565 |    | develo  | ped shall be included in any mixture of similar-acting chemicals under        |
| 2566 |    | consid  | eration in Tier 2. The evaluation of 35 Ill. Adm. Code 620.615 regarding      |
| 2567 |    | mixtur  | es of similar-acting chemicals shall be considered satisfied for Class I      |
| 2568 |    | ground  | lwater at the point of human exposure if either of the following              |
| 2569 |    | require | ements are achieved:                                                          |
| 2570 |    | -       |                                                                               |
| 2571 |    | 1)      | Calculate the weighted average using the following equations:                 |
| 2572 |    |         |                                                                               |
|      |    |         | $\mathbf{w}_1 = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_a$    |

8

e e

$$W_{ave} = \frac{x_1}{CUO_{x_1}} + \frac{x_2}{CUO_{x_2}} + \frac{x_3}{CUO_{x_3}} + \dots \quad x_a$$

| 2573<br>2574 |            |                      | where:                                         |            |                                                                                                                                                                                        |
|--------------|------------|----------------------|------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2575         |            |                      | Wave                                           | =          | Weighted Average                                                                                                                                                                       |
|              |            |                      | x <sub>1</sub> through x <sub>a</sub>          | . =        | Concentration of each individual contaminant<br>at the location of concern. Note that, depending<br>on the target organ, the actual number of<br>contaminants will range from 2 to 33. |
|              |            |                      | CUO <sub>x</sub>                               | =          | A Tier 1 or Tier 2 remediation objective must be developed for each $x_a$ .                                                                                                            |
| 2576         |            |                      |                                                |            |                                                                                                                                                                                        |
| 2577         |            |                      | A) If the                                      | e value    | of the weighted average calculated in accordance with                                                                                                                                  |
| 2578         |            |                      | the e                                          | quation    | s above is less than or equal to 1.0, then the                                                                                                                                         |
| 2579         |            |                      | reme                                           | diation    | objectives are met for those chemicals.                                                                                                                                                |
| 2580         |            |                      |                                                |            |                                                                                                                                                                                        |
| 2581         |            |                      | B) If the                                      | value      | of the weighted average calculated in accordance with                                                                                                                                  |
| 2582         |            |                      | the e                                          | quation    | s above is greater than 1.0, then additional                                                                                                                                           |
| 2583         |            |                      | reme                                           | diation    | must be carried out until the level of contaminants                                                                                                                                    |
| 2584         |            |                      | rema                                           | ining ir   | the remediated area has a weighted average                                                                                                                                             |
| 2585         |            |                      | calcu                                          | lated ir   | accordance with the equation above less than or                                                                                                                                        |
| 2586         |            |                      | equa                                           | l to one   | ; or                                                                                                                                                                                   |
| 2587         |            | •                    | ~                                              |            |                                                                                                                                                                                        |
| 2588         |            | 2)                   | Divide each                                    | individ    | ual chemical's remediation objective by the number of                                                                                                                                  |
| 2589         |            |                      | chemicals in                                   | that sp    | ecific target organ group that were detected at the site.                                                                                                                              |
| 2590         |            |                      | Each of the c                                  | contami    | nant concentrations at the site is then compared to the                                                                                                                                |
| 2591         |            |                      | remediation                                    | objectiv   | ves that have been adjusted to account for this                                                                                                                                        |
| 2592         |            |                      | potential add                                  | litivity.  |                                                                                                                                                                                        |
| 2593         | /t         | The err              | almation of 26                                 | . T11 A .3 | las Cada (20 (15 magnitude minteres of similar active                                                                                                                                  |
| 2394         | u)         | ahomio               | aluation of 55                                 | o III. Ad  | tinfield if the sumulative risk from any                                                                                                                                               |
| 2595         |            | contam               | inantscontam                                   | inont(s    | ) of concern listed in Annendix A. Table I plus any                                                                                                                                    |
| 2590         |            | other c              | ontaminantse                                   | ontomi     | approximation of concern detected in groundwater and listed                                                                                                                            |
| 2597         |            | $\frac{00001}{1000}$ | endix A Tabl                                   | e F as a   | affecting the same target organ/organ system as the                                                                                                                                    |
| 2598         |            | contam               | vinantscontam                                  | inont(c    | A of concern detected from Appendix A. Table I. does                                                                                                                                   |
| 2575         |            | not eve              | $\frac{1111113}{11111111111111111111111111111$ | 00         | for concern detected from Appendix A, Table 1, does                                                                                                                                    |
| 2600         |            | not ext              |                                                | 00.        |                                                                                                                                                                                        |
| 2602         | e)         | Ground               | lwater remedi                                  | iation o   | biectives for the indoor inhalation exposure route shall                                                                                                                               |
| 2602         | <u>07</u>  | be deve              | eloned in acco                                 | ordance    | with Section 742.812                                                                                                                                                                   |
| 2604         |            | <u></u>              | <u>eropeu muee</u>                             | <u> </u>   |                                                                                                                                                                                        |
| 2605         | (So        | ource: Ame           | nded at 36 Ill                                 | . Reg.     | , effective )                                                                                                                                                                          |
| 2606         | (          |                      |                                                | 0          | ······································                                                                                                                                                 |
| 2607         | Section 74 | 2.810 <u>RB</u>      | <u>CA</u> Calculati                            | ons to I   | Predict Impacts from Remaining Groundwater                                                                                                                                             |

\*

| 2608                                                 | Contaminat | ion                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------|------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2609<br>2610<br>2611<br>2612<br>2613<br>2614<br>2615 | a)         | Equation R2<br>groundwater<br>(dimensions<br>dimensional<br>horizontal di | 6 predicts the contaminant concentration along the centerline of a plume emanating from a vertical planar source in the aquifer $S_w$ wide and $S_d$ deep). This model accounts for both three-<br>dispersion (x is the direction of groundwater flow, y is the other rection, and z is the vertical direction) and biodegradation.                                                                                                                                    |
| 2616<br>2617                                         |            | 1) The j                                                                  | parameters in this equation are:                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2017                                                 |            | Х                                                                         | = distance from the planar source to the location of concern,<br>along the centerline of the groundwater plume (i.e., $y = 0$ , $z = 0$ )                                                                                                                                                                                                                                                                                                                              |
|                                                      |            | C <sub>x</sub>                                                            | = the concentration of the contaminant at a distance X from the source, along the centerline of the plume                                                                                                                                                                                                                                                                                                                                                              |
|                                                      |            | C <sub>sour</sub>                                                         | $c_{ce}$ = the greatest potential concentration of the contaminant of<br>concern in the groundwater at the source of the<br>contamination, based on the concentrations of contaminants<br>in groundwater due to the release and the projected<br>concentration of the contaminant migrating from the soil to<br>the groundwater. As indicated above, the model assumes a<br>planar source discharging groundwater at a concentration<br>equal to C <sub>source</sub> . |
|                                                      |            | $\alpha_{\rm x}$                                                          | = dispersivity in the x direction (i.e., Equation R16)                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                      |            | $\alpha_y$                                                                | = dispersivity in the y direction (i.e., Equation R17)<br>= dispersivity in the z direction (i.e., Equation R18)                                                                                                                                                                                                                                                                                                                                                       |
|                                                      |            | U<br>U                                                                    | = specific discharge (i.e., actual groundwater flow velocity<br>through a porous medium; takes into account the fact that the<br>groundwater actually flows only through the pores of the<br>subsurface materials) where the aquifer hydraulic<br>conductivity (K), the hydraulic gradient (I) and the total soil<br>porosity $\Theta_{\rm T}$ must be known (i.e., Equation R19)                                                                                      |
|                                                      |            | λ                                                                         | <ul> <li>first order degradation constant obtained from Appendix C,</li> <li>Table E or from measured groundwater data</li> </ul>                                                                                                                                                                                                                                                                                                                                      |
|                                                      |            | $S_w$                                                                     | = width of planar groundwater source in the y direction                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2618                                                 |            | $S_d$                                                                     | = depth of planar groundwater source in the z direction                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2619<br>2620<br>2621                                 |            | 2) The f<br>K, I,                                                         | following parameters are determined through field measurements: U, $\Theta_T$ , S <sub>w</sub> , S <sub>d</sub> .                                                                                                                                                                                                                                                                                                                                                      |
| 2622<br>2623<br>2624                                 |            | A)                                                                        | The determination of values for U, K, I and $\Theta_T$ can be obtained through the appropriate laboratory and field techniques;                                                                                                                                                                                                                                                                                                                                        |

| 2625<br>2626             |               | B)             | From the immediate down-gradient edge of the source of the                  |
|--------------------------|---------------|----------------|-----------------------------------------------------------------------------|
| 2620                     |               |                | ground water contamination values for $S_w$ and $S_d$ shall be              |
| 2628                     |               |                | source which exceeds the Tier 1 groundwater at the                          |
| 2629                     |               |                | objective. Signation as the death of groundwater remediation                |
| 2630                     |               |                | which exceeds the Tier 1 groundwater remodiation a light                    |
| 2631                     |               |                | which exceeds the field groundwater remediation objective; and              |
| 2632                     |               | $(\mathbf{C})$ | Total soil porosity can also be calculated using Equation D22               |
| 2633                     |               | 0)             | rotar son porosity can also be calculated using Equation R23.               |
| 2634                     | b)            | Once value     | s are obtained for all the input parameters identified in subsection (a)    |
| 2635                     | 0)            | of this Sect   | ion the contaminant concentration $C_{\rm c}$ along the centerline of the   |
| 2636                     |               | plume at a     | distance X from the source shall be calculated so that X is the distance.   |
| 2637                     |               | from the do    | wn-gradient edge of the source of the contamination at the site to the      |
| 2638                     |               | point where    | the contaminant concentration is equal to the Tier 1 groundwater            |
| 2639                     |               | remediation    | objective or concentration determined according to the procedures           |
| 2640                     |               | specified in   | 35 Ill. Adm. Code 620. Subpart F.                                           |
| 2641                     |               | Specifica in   | 50 m. rum. 0000 020; 500 part 1.                                            |
| 2642                     |               | 1) If th       | ere are any potable water supply wells located within the calculated        |
| 2643                     |               | dista          | ance X, then the Tier 1 groundwater remediation objective or                |
| 2644                     |               | cone           | centration shall be met at the edge of the minimum or designated            |
| 2645                     |               | max            | imum setback zone of the nearest notable water supply down gradient         |
| 2646                     |               | oft            | the source. To demonstrate that a minimum or maximum setback zone           |
| 2647                     |               | ofa            | notable water supply well will not be impacted above the applicable         |
| 2648                     |               | Tier           | 1 groundwater remediation objective or concentration determined             |
| 2649                     |               | acco           | ording to the procedures specified in 35 Ill. Adm. Code 620. Subport F.     |
| 2650                     |               | X sł           | all be the distance from the Course location to the edge of the setback     |
| 2651                     |               | zone           | 2.                                                                          |
| 2652                     |               |                |                                                                             |
| 2653                     |               | 2) To c        | emonstrate that no surface water is adversely impacted X shall be the       |
| 2654                     |               | dista          | ince from the down-gradient edge of the source of the contamination         |
| 2655                     |               | site           | to the nearest surface water body. This calculation must show that the      |
| 2656                     |               | cont           | aminant in the groundwater at this location $(C_{\nu})$ does not exceed the |
| 2657                     |               | appl           | icable water quality standard.                                              |
| 2658                     |               | 11             | 1 9                                                                         |
| 2659                     | (Sourc        | ce: Amended    | at 36 Ill. Reg. effective                                                   |
| 2660                     |               |                |                                                                             |
| 2661                     | Section 742.8 | 812 J&E Gro    | oundwater Equations for the Indoor Inhalation Exposure Route                |
| 2663                     | Groundwater   | remediation    | biactives for the indeer inhelation and a surger that the surger            |
| 2664                     | the modified  | I&F model as   | described in Section 742.717 execute as falleness                           |
| 200 <del>4</del><br>2665 | the mounted a | san mouer as   | a deserved in Section 742.717, except as follows:                           |
| 2665<br>2667             | <u>a)</u>     | In Equation    | J&E9a, the total number of layers of soil that contaminants migrate         |
|                          |               | anough noi     | the source to the outleting shall include a capitary tringe layer.          |

| 2669b)The thickness of the capillary fringe layer is 37.5 cm.2670c)The volumetric water content of the capillary fringe shall be 90% of the total2671c)The volumetric water content of the capillary fringe shall be 90% of the total2672porosity of the soil that comprises the capillary fringe.26732674d)2674d)Equations J&E7 and J&E8 calculate an acceptable groundwater remediation2675objective.26761)This calculation is made using:26782679A)2680Equation J&E4 and2681B)the assumption that this gas is in equilibrium with any |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26702671c)The volumetric water content of the capillary fringe shall be 90% of the total2672porosity of the soil that comprises the capillary fringe.267326732674d)Equations J&E7 and J&E8 calculate an acceptable groundwater remediation2675objective.2676267726781)This calculation is made using:2679A)the soil gas remediation objective calculated in accordance with<br>Equation J&E4 and2680B)the assumption that this gas is in equilibrium with any                                                                            |
| 2671c)The volumetric water content of the capillary fringe shall be 90% of the total<br>porosity of the soil that comprises the capillary fringe.2672porosity of the soil that comprises the capillary fringe.26732674d)2674d)Equations J&E7 and J&E8 calculate an acceptable groundwater remediation<br>objective.2675objective.26761)This calculation is made using:2678A)the soil gas remediation objective calculated in accordance with<br>Equation J&E4 and2680B)the assumption that this gas is in equilibrium with any           |
| 2672porosity of the soil that comprises the capillary fringe.26732673267426752675267626762677267826782679A)268026812682B)the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                                                                                                                         |
| 2673         2674       d)       Equations J&E7 and J&E8 calculate an acceptable groundwater remediation         2675       objective.         2676       1)       This calculation is made using:         2678       2679       A)       the soil gas remediation objective calculated in accordance with         2680       Equation J&E4 and       2681         2682       B)       the assumption that this gas is in equilibrium with any                                                                                           |
| 2675       Equations J&E7 and J&E8 calculate an acceptable groundwater remediation         2675       objective.         2676       1)         2677       1)         This calculation is made using:         2678         2679         A)       the soil gas remediation objective calculated in accordance with         2680         2681         2682         B)       the assumption that this gas is in equilibrium with any                                                                                                         |
| 2671       and reception relation relation relation relation         2675       objective.         2676       1)         2677       1)         2678         2679         2680         2681         2682         B)       the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                         |
| 2675       000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26771)This calculation is made using:26782679A)the soil gas remediation objective calculated in accordance with<br>Equation J&E4 and2680B)the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                                                                                                        |
| 26771)This calculation is made using:26782679A)the soil gas remediation objective calculated in accordance with<br>Equation J&E4 and268026812682B)the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                                                                                                |
| 2679A)the soil gas remediation objective calculated in accordance with<br>Equation J&E4 and2680Equation J&E4 and2681B)the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                                                                                                                            |
| 2679A)Inc son gas remediation objective calculated in accordance with<br>Equation J&E4 and2681B)the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                                                                                                                                                  |
| 2080Equation 3&E4, and2681B)the assumption that this gas is in equilibrium with any                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2682 <u>B) the assumption that this gas is in equilibrium with any</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2082 <u>B) the assumption that this gas is in equilibrium with any</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2083 <u>contamination in the groundwater.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2685 <u>2) Equation J&amp;E / is used when the mode of contaminant transport is both</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{\text{diffusion and advection. In this scenario, the Q_{\text{soil}} value equals 83.33}{34}$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2687 <u>cm<sup>-</sup>/sec as described in Section 742.505.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2689 <u>3) Equation J&amp;E8 is used when the mode of contaminant transport is</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{diffusion only. In this scenario, the Q_{soil} value equals 0.0 cm3/sec as}{1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                |
| described in Section 742.505.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2693 e) <u>A groundwater remediation objective that exceeds the water solubility of that</u>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2694 <u>chemical (refer to Appendix C, Table E for solubility values) is not allowed.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2696 (Source: Added at 36 Ill. Reg, effective)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2698 SUBPART I: TIER 3 EVALUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2700 Section 742.900 Tier 3 Evaluation Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a) Tier 3 sets forth a flexible framework to develop remediation objectives outside of                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| the requirements of Tiers 1 and 2. Although Tier 1 and Tier 2 evaluations are not                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2704 prerequisites to conduct Tier 3 evaluations, data from Tier 1 and Tier 2 can assist                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| in developing remediation objectives under a Tier 3 evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| b) The level of detail required to adequately characterize a site depends on the                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2708 particular use of Tier 3. Tier 3 can require additional investigative efforts beyond                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| those described in Tier 2 to characterize the physical setting of the site. However,                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2710 in situations where remedial efforts have simply reached a physical obstruction                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 2711         |    | additic                                                                         | onal inve                                                                     | estigation may not be necessary for a Tier 3 submittal.                 |  |  |
|--------------|----|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| 2712         |    | Situati                                                                         | Situations that can be considered for a Tion 2 conduction in the last one and |                                                                         |  |  |
| 2713         | 0) | Situations that can be considered for a fifer 3 evaluation include, but are not |                                                                               |                                                                         |  |  |
| 2714         |    | mmee                                                                            | 1 10:                                                                         |                                                                         |  |  |
| 2715         |    | 1)                                                                              | M. J.C.                                                                       |                                                                         |  |  |
| 2/10         |    | 1)                                                                              | Modin                                                                         | cation of parameters not allowed under 11er 2;                          |  |  |
| 2/1/         |    | •                                                                               | <b>TT C</b>                                                                   |                                                                         |  |  |
| 2/18         |    | 2)                                                                              | Use of                                                                        | models different from those used in Tier 2;                             |  |  |
| 2719         |    | 2)                                                                              |                                                                               |                                                                         |  |  |
| 2720         |    | 3)                                                                              | Use of                                                                        | additional site data, such as results of indoor air sampling, to        |  |  |
| 2721         |    |                                                                                 | improv                                                                        | e or confirm predictions of exposed receptors to contaminants of        |  |  |
| 2722         |    |                                                                                 | concern                                                                       | n;                                                                      |  |  |
| 2723         |    |                                                                                 |                                                                               |                                                                         |  |  |
| 2724         |    | 4)                                                                              | Analys                                                                        | is of site-specific risks using formal risk assessment, probabilistic   |  |  |
| 2725         |    |                                                                                 | data an                                                                       | alysis, and sophisticated fate and transport models (e.g., requesting   |  |  |
| 2726         |    |                                                                                 | a target                                                                      | t hazard quotient greater than 1 or a target cancer risk greater than 1 |  |  |
| 2727         |    |                                                                                 | in 1,00                                                                       | 0,000);                                                                 |  |  |
| 2728         |    |                                                                                 |                                                                               |                                                                         |  |  |
| 2729         |    | 5)                                                                              | Reques                                                                        | sts for site-specific remediation objectives because an assessment      |  |  |
| 2730         |    |                                                                                 | indicat                                                                       | es further remediation is not practical;                                |  |  |
| 2731         |    |                                                                                 |                                                                               | -                                                                       |  |  |
| 2732         |    | 6)                                                                              | Incomp                                                                        | olete human exposure <u>parkwayspathway(s)</u> not excluded under       |  |  |
| 2733         |    |                                                                                 | Subpar                                                                        | t C;                                                                    |  |  |
| 2734         |    |                                                                                 |                                                                               |                                                                         |  |  |
| 2735         |    | 7)                                                                              | Use of                                                                        | toxicological-specific information not available from the sources       |  |  |
| 2736         |    | ,                                                                               | listed in                                                                     | n Tier 2:                                                               |  |  |
| 2737         |    |                                                                                 |                                                                               | ,                                                                       |  |  |
| 2738         |    | 8)                                                                              | Land u                                                                        | ses which are substantially different from the assumed residential      |  |  |
| 2739         |    | -)                                                                              | or indu                                                                       | strial/commercial property uses of a site (e.g. a site will be used for |  |  |
| 2740         |    |                                                                                 | recreat                                                                       | ion in the future and cannot be evaluated in Tier 1 or 2): and          |  |  |
| 2741         |    |                                                                                 | 1001000                                                                       |                                                                         |  |  |
| 2742         |    | 9)                                                                              | Reques                                                                        | ts for site-specific remediation objectives that exceed Tier 1          |  |  |
| 2743         |    | ~)                                                                              | ground                                                                        | water remediation objectives so long as the following is                |  |  |
| 2743         |    |                                                                                 | demon                                                                         | strated.                                                                |  |  |
| 2744         |    |                                                                                 | demon.                                                                        |                                                                         |  |  |
| 2745         |    |                                                                                 | ۵)                                                                            | To the extent practical the exceedance of the groundwater quality       |  |  |
| 2740         |    |                                                                                 | лј                                                                            | standard has been minimized and hereficial use appropriate to the       |  |  |
| 2747         |    |                                                                                 |                                                                               | sumaaru nas been minimizeu ana beneficial use appropriale io ine        |  |  |
| 2740         |    |                                                                                 |                                                                               | groundwater that was impacted has been returned, and                    |  |  |
| ∠147<br>2750 |    |                                                                                 | D)                                                                            | Any threat to have me health on the and in the                          |  |  |
| 2751         |    |                                                                                 | D)                                                                            | Any inreal to numan nearin or the environment has been                  |  |  |
| 2751         |    |                                                                                 |                                                                               | minimizea- [415 ILCS 5/58.5(d)(4)(A)]; and                              |  |  |
| 2752         |    |                                                                                 |                                                                               |                                                                         |  |  |

.

| 2753  |                | 10) Use of building control technologies, other than those described in Subpart        |
|-------|----------------|----------------------------------------------------------------------------------------|
| 2754  |                | L, to prevent completion of the indoor inhalation exposure route.                      |
| 2755  | 1              |                                                                                        |
| 2756  | d)             | For requests of a target cancer risk ranging between 1 in 1,000,000 and 1 in           |
| 2757  |                | 10,000 at the point of human exposure or a target hazard quotient greater than 1 at    |
| 2758  |                | the point of human exposure, the requirements of Section 742.915 shall be              |
| 2759  |                | followed. Requests for a target cancer risk exceeding 1 in 10,000 at the point of      |
| 2760  |                | human exposure are not allowed.                                                        |
| 2761  |                |                                                                                        |
| 2762  | e)             | Requests for approval of a Tier 3 evaluation must be submitted to the Agency for       |
| 2763  |                | review under the specific program under which remediation is performed. When           |
| 2764  |                | reviewing a submittal under Tier 3, the Agency shall consider whether the              |
| 2765  |                | interpretations and conclusions reached are supported by the information               |
| 2766  |                | gathered- [415 ILCS 58.7(e)(1)]. The Agency shall approve a Tier 3 evaluation if       |
| 2767  |                | the person submits the information required under this Part and establishes            |
| 2768  |                | through such information that public health is protected and that specified risks to   |
| 2769  |                | human health and the environment have been minimized.                                  |
| 2770  |                |                                                                                        |
| 2771  | f)             | If contaminants of concern include polychlorinated biphenyls (PCBs), requests for      |
| 2772  | ,              | approval of a Tier 3 evaluation must additionally address the applicability of 40      |
| 2773  |                | CFR 761.                                                                               |
| 2774  |                |                                                                                        |
| 2775  | (Sour          | ce: Amended at 36 Ill. Reg., effective )                                               |
| 2776  | •              |                                                                                        |
| 2777  | Section 742.9  | 920 Impractical Remediation                                                            |
| 2778  |                |                                                                                        |
| 2779  | Any request f  | for site-specific remediation objectives due to impracticality of remediation shall be |
| 2780  | submitted to t | the Agency for review and approval. Any request for site-specific remediation          |
| 2781  | objectives du  | e to impracticality of remediation that involves the indoor inhalation exposure route  |
| 2782  | shall follow S | Section 742.935 in lieu of this Section. A submittal under this Section shall include  |
| 2783  | the following  | information:                                                                           |
| 2784  | e              |                                                                                        |
| 2785  | a)             | The reasons <del>reason(s)</del> why the remediation is impractical;                   |
| 2786  | ,              |                                                                                        |
| 2787  | b)             | The extent of contamination:                                                           |
| 2788  | - /            | - · · · · · · · · · · · · · · · · · · ·                                                |
| 2789  | c)             | Geology, including soil types:                                                         |
| 2790  | •)             |                                                                                        |
| 2791  | (b             | The potential impact to groundwater                                                    |
| 2.792 | α,             | The Potential million to Bround funct,                                                 |
| 2.793 | e)             | Results and locations of sampling events:                                              |
| 2794  | 0)             | tes and room of building of ones,                                                      |
| 2795  | f)             | Map of the area including all utilities and structures: and                            |
| _,,,, | *)             | ramp or the area, meraaning an animped and be detailed, and                            |

| 2796<br>2797 | a)                 | Present and post-remediation uses of the area of contamination including human       |
|--------------|--------------------|--------------------------------------------------------------------------------------|
| 2798         | 5)                 | receptors at risk.                                                                   |
| 2799         |                    |                                                                                      |
| 2800         | (Sour              | ce: Amended at 36 Ill. Reg, effective)                                               |
| 2801         |                    |                                                                                      |
| 2802         | Section 742.       | 925 Exposure Routes                                                                  |
| 2803         | 75 I · I ·         |                                                                                      |
| 2804         | lechnical ini      | formation may demonstrate that there is no actual or potential impact of             |
| 2805         | contaminants       | s of concern to receptors from a particular exposure route. In these instances, a    |
| 2800         | demonstratio       | in excluding an exposure route shall be submitted to the Agency for review and       |
| 2807         | approval. <u>A</u> | demonstration that involves the indoor inhalation exposure route shall follow        |
| 2808         | Section 742.       | <u>935 in lieu of this Section.</u> A submittal under this Section shall include the |
| 2809         | following inf      | ormation:                                                                            |
| 2010         |                    |                                                                                      |
| 2011         | a)                 | A description of the route evaluated;                                                |
| 2012         | <b>b</b> )         | A description of the site on duluminal site 1 and it                                 |
| 2015         | 0)                 | A description of the site and physical site characteristics;                         |
| 2814         | c)                 | A discussion of the regult and nessibility of the nexts becausing active in the      |
| 2815         | 0)                 | future: and                                                                          |
| 2817         |                    | Tuture, and                                                                          |
| 2818         | (b                 | Technical support that may include but is not limited to the following:              |
| 2819         | u)                 | rechined support that may include, but is not minited to, the following.             |
| 2820         |                    | 1) a discussion of the natural or man-made harriers to that exposure route:          |
| 2821         |                    | i) a and assisted of the natural of main made barriers to that exposure route,       |
| 2822         |                    | 2) calculations and modeling:                                                        |
| 2823         |                    | ,                                                                                    |
| 2824         |                    | 3) physical and chemical properties of contaminants of concern; and                  |
| 2825         |                    |                                                                                      |
| 2826         |                    | 4) contaminant migration properties.                                                 |
| 2827         |                    |                                                                                      |
| 2828         | (Sour              | ce: Amended at 36 Ill. Reg, effective)                                               |
| 2829         |                    |                                                                                      |
| 2830         | Section 742.9      | <b>035 Indoor Inhalation Exposure Route</b>                                          |
| 2831         |                    |                                                                                      |
| 2832         | <u>a)</u>          | Exclusion of Exposure Route                                                          |
| 2833         |                    | Site information may demonstrate that there is no actual or potential impact of      |
| 2834         |                    | contaminants of concern to receptors from the indoor inhalation exposure route.      |
| 2835         |                    | In the instances, a demonstration excluding the exposure route shall be submitted    |
| 2836         |                    | to the Agency for review and approval. A submittal under this Section shall          |
| 2837         |                    | include the following information:                                                   |
| 2838         |                    |                                                                                      |
| 2839         |    | <u>1)</u>  | A description of the site, physical site characteristics, existing and planned |
|--------------|----|------------|--------------------------------------------------------------------------------|
| 2840         |    |            | buildings, and existing and planned manmade pathways; and                      |
| 2841         |    |            |                                                                                |
| 2842         |    | 2)         | A discussion of the possibility of the route becoming active in the future.    |
| 2843         |    |            |                                                                                |
| 2844         | b) | Exclu      | usion of Exposure Route Using Building Control Technologies                    |
| 2845         |    | Any 1      | proposals to use building control technologies as a means to prevent or        |
| <b>28</b> 46 |    | mitig      | ate human exposures under the indoor inhalation exposure route that differ     |
| 2847         |    | from       | the requirements of Subpart L shall be submitted to the Agency for review      |
| 2848         |    | and a      | pproval. A submittal under this Section shall include the following            |
| 2849         |    | inform     | mation:                                                                        |
| 2850         |    |            |                                                                                |
| 2851         |    | 1)         | A description of the site and physical site characteristics:                   |
| 2852         |    | <u> </u>   |                                                                                |
| 2853         |    | 2)         | The current extent of contamination:                                           |
| 2854         |    | <u>-</u> , |                                                                                |
| 2855         |    | 3)         | Geology, including soil parameters                                             |
| 2856         |    | <u> </u>   | <u>sectory</u> , meruaning bon parameters,                                     |
| 2857         |    | 4)         | Results and locations of sampling events.                                      |
| 2858         |    | <u> </u>   |                                                                                |
| 2859         |    | 5)         | Scaled map of the area including all buildings and man-made pathways:          |
| 2860         |    | <u> </u>   | seared map of the area, meridang an oundings and man made pairways,            |
| 2861         |    | 6)         | A description of building characteristics and methods of construction          |
| 2862         |    | ФŢ         | including a description of man-made nathways:                                  |
| 2863         |    |            | merdunig a description of man made pathways,                                   |
| 2863         |    | 7)         | Present and post-remediation uses of the land above the area of                |
| 2865         |    | <u></u>    | contamination including human recentors at risk:                               |
| 2866         |    |            | containination, morading numai receptors at risk,                              |
| 2867         |    | 8)         | A description of any building control technologies currently in place or       |
| 2868         |    | <u>07</u>  | proposed for installation that can reduce or eliminate the potential for       |
| 2869         |    |            | completion of the exposure route including design and construction             |
| 2870         |    |            | specifications:                                                                |
| 2870         |    |            | <u>specifications</u> ,                                                        |
| 2871         |    | 0)         | Information regarding the effectiveness of any building control                |
| 2872         |    | <u></u>    | technologies currently in place or proposed for installation and a schedule    |
| 2873         |    |            | for performance testing to show the effectiveness of the control               |
| 2875         |    |            | technology For buildings not yet constructed an approved building              |
| 2075         |    |            | acentral technology, shall be in place and exerctional prior to human          |
| 2870         |    |            | control certifology shall be in place and operational prior to human           |
| 2011<br>2878 |    |            | <u>occupancy</u> ,                                                             |
| ∠070<br>2870 |    | 10)        | Identification of documents reviewed and the criteric wood in the              |
| 2013         |    | 10)        | documents for determining whether building control technologies are            |
| ∠00U<br>2001 |    |            | affortive and how these aritaria compare to existing an establishing the       |
| 2001         |    |            | enecuve and now mose cinena compare to existing or potential buildings         |

| 2882         |            |                | <u>or mar</u>    | n-made pathways at the site; and                                      |
|--------------|------------|----------------|------------------|-----------------------------------------------------------------------|
| 2883         |            | 11)            | A . T            |                                                                       |
| 2004         |            | <u>11)</u>     | <u>A desc</u>    | laging will be operated and maintained for the life of the building   |
| 2885         |            |                | <u>techno</u>    | logies will be operated and maintained for the life of the buildings  |
| 2880         |            |                | and ma           | an-made pathways, or until soll gas and groundwater contaminant       |
| 2887         |            |                | concer           | trations have reached remediation objectives that are approved by     |
| 2888         |            |                | the Ag           | ency. This includes provisions for potential extended system          |
| 2889         |            |                | inoper           | ability due to power failure or other disruption.                     |
| 2890         |            |                |                  |                                                                       |
| 2891         | <u>c)</u>  | Calcul         | ations a         | nd Modeling Used to Establish Soil Gas Remediation Objectives         |
| 2892         |            | <u>The ca</u>  | lculatio         | ns and modeling shall account for contaminant transport through       |
| 2893         |            | <u>the me</u>  | chanisn          | ns of diffusion and advection. Proposals to use soil gas data,        |
| 2894         |            | includi        | <u>ng sub-</u>   | slab samples, to establish remediation objectives for the indoor      |
| 2895         |            | <u>inhalat</u> | <u>ion exp</u>   | osure route that differ from the requirements of Section 742.227      |
| 2896         |            | <u>shall b</u> | e submi          | itted to the Agency for review and approval. A submittal under this   |
| 2897         |            | Section        | <u>ı shall i</u> | nclude the following information:                                     |
| 2898         |            |                |                  |                                                                       |
| 2899         |            | 1)             | Scaled           | map of the area, showing all buildings and man-made pathways          |
| <b>290</b> 0 |            |                | (curren          | nt and planned);                                                      |
| 2901         |            |                |                  |                                                                       |
| 2902         |            | 2)             | The cu           | rrent extent of contamination:                                        |
| 2903         |            |                |                  |                                                                       |
| 2904         |            | 3)             | Geolog           | zy, including soil parameters:                                        |
| 2905         |            | <i></i>        |                  |                                                                       |
| 2906         |            | 4)             | Depth            | to groundwater (including seasonal variation) and flow direction:     |
| 2907         |            | <i>F</i>       | <u> </u>         |                                                                       |
| 2908         |            | 5)             | Locati           | on of soil gas sampling points; and                                   |
| 2909         |            | <u>-</u>       | 20000            | <u> </u>                                                              |
| 2910         |            | 6)             | A disc           | ussion of soil gas sampling procedures that, at a minimum             |
| 2911         |            | <u>~</u> 7     | addres           | ses the following.                                                    |
| 2912         |            |                | <u>uuui 05</u>   | <u>beb die tono wing.</u>                                             |
| 2912         |            |                | A)               | sampling equipment.                                                   |
| 2914         |            |                | <u> </u>         |                                                                       |
| 2915         |            |                | B)               | soil gas collection protocol including field tests and weather        |
| 2916         |            |                | <u>D</u> ]       | conditions: and                                                       |
| 2917         |            |                |                  |                                                                       |
| 2917         |            |                | $(\mathbf{C})$   | laboratory analytical methods                                         |
| 2010         |            |                | $\Box$           | adoratory undryteen methods.                                          |
| 2919         | d)         | Calcul         | ations a         | nd Modeling Used to Establish Soil Remediation Objectives             |
| 2920         | <u>u</u> / | The ca         | loulatio         | ns and modeling shall account for contaminant transport through       |
| 2921         |            | the me         | chanien          | as of diffusion and advection. Any proposals to use soil date in liqu |
| 2023         |            | of soil        | mainsi           | a to establish remediation objectives for the indeer inhelation       |
| 2723         |            | 01 SOIL        | gas ual          | a to establish remember objectives for the indoor innalation          |
| 2924         |            | exposu         | re route         | e shall be submitted to the Agency for review and approval. A         |

r b

| 2925 |           | submi         | ttal under               | this Section shall include the following information:            |
|------|-----------|---------------|--------------------------|------------------------------------------------------------------|
| 2920 |           | 1)            | Scaled m                 | an of the area, showing all buildings and man made nothwave      |
| 2028 |           | <u>1,</u> /   | (current                 | and planned):                                                    |
| 2920 |           |               | <u>(current</u>          | and planned),                                                    |
| 2929 |           | 2)            | The our                  | ent extent of contemination:                                     |
| 2930 |           | <u></u>       |                          | ent extent of contamination,                                     |
| 2931 |           | 2)            | Goology                  | including soil normatory                                         |
| 2932 |           | <u>5</u> ]    | <u>Ocology</u>           | , meruding son parameters,                                       |
| 2933 |           | 4)            | Location                 | of soil compliant a sinter                                       |
| 2934 |           | <u>4)</u>     | Location                 | tor son sampling points,                                         |
| 2935 |           | 5)            | 1 diama                  | sion of soil compling procedures that at a minimum addresses     |
| 2930 |           | <u>5)</u>     | A discus                 | sion of son sampling procedures that, at a minimum, addresses    |
| 2937 |           |               | <u>ule 10110</u>         | wing:                                                            |
| 2938 |           |               | <b>(</b> )               | amelina aminu ant                                                |
| 2939 |           |               | $\underline{A}$ <u>S</u> | amping equipment:                                                |
| 2940 |           |               |                          |                                                                  |
| 2941 |           |               | <u>B)</u> <u>S</u>       | on confection protocol, including field tests and weather        |
| 2942 |           |               | <u>c</u>                 | onations; and                                                    |
| 2943 |           |               | (1)                      |                                                                  |
| 2944 |           |               | <u>C) <u>I</u>a</u>      | aboratory analytical methods;                                    |
| 2945 |           | $\cap$        | M. d.                    |                                                                  |
| 2946 |           | <u>6)</u>     | Mathema                  | atical and technical justification for the model proposed; and   |
| 2947 |           |               |                          |                                                                  |
| 2948 |           | <u>/)</u>     | Demonst                  | tration that the model was correctly applied.                    |
| 2949 |           | <u> </u>      |                          |                                                                  |
| 2950 | <u>e)</u> | Calcu         | ations and               | Modeling Used to Establish Groundwater Remediation               |
| 2951 |           | Objec         | ives                     |                                                                  |
| 2952 |           | The ca        | lculations               | and modeling shall account for contaminant transport through     |
| 2953 |           | the me        | <u>chanisms</u>          | of diffusion and advection. Proposals to use groundwater data to |
| 2954 |           | <u>establ</u> | <u>sh remedi</u>         | ation objectives for the indoor inhalation exposure route that   |
| 2955 |           | differ        | from the r               | equirements of Sections 742.805 and 742.812 shall be submitted   |
| 2956 |           | to the        | Agency for               | or review and approval. A submittal under this Section shall     |
| 2957 |           | includ        | <u>e the follo</u>       | wing information:                                                |
| 2958 |           |               |                          |                                                                  |
| 2959 |           | <u>1)</u>     | Scaled m                 | ap of the area, showing all buildings and man-made pathways      |
| 2960 |           |               | (current a               | and planned);                                                    |
| 2961 |           |               |                          |                                                                  |
| 2962 |           | <u>2)</u>     | The curre                | ent extent of contamination;                                     |
| 2963 |           |               |                          |                                                                  |
| 2964 |           | <u>3)</u>     | Geology.                 | , including soil parameters and the thickness of the capillary   |
| 2965 |           |               | fringe;                  |                                                                  |
| 2966 |           |               |                          |                                                                  |
| 2967 |           | <u>4)</u>     | Depth to                 | groundwater (including seasonal variation) and flow direction;   |

х Х. р

| 2968 |               |             |                                                                             |
|------|---------------|-------------|-----------------------------------------------------------------------------|
| 2969 |               | 5)          | Results and locations of groundwater sampling events:                       |
| 2970 |               |             |                                                                             |
| 2971 |               | 6)          | Mathematical and technical justification for the model proposed; and        |
| 2972 |               |             |                                                                             |
| 2973 |               | 7)          | Demonstration that the model was correctly applied.                         |
| 2974 |               |             |                                                                             |
| 2975 | (Sourc        | e: Add      | led at 36 Ill. Reg., effective )                                            |
| 2976 | × ×           |             |                                                                             |
| 2977 |               |             | SUBPART J: INSTITUTIONAL CONTROLS                                           |
| 2978 |               |             |                                                                             |
| 2979 | Section 742.1 | 000 In      | stitutional Controls                                                        |
| 2980 |               |             |                                                                             |
| 2981 | a)            | Institu     | tional controls in accordance with this Subpart must be placed on the       |
| 2982 | ,             | proper      | ty when remediation objectives are based on any of the following            |
| 2983 |               | assum       | ptions:                                                                     |
| 2984 |               |             | *                                                                           |
| 2985 |               | 1)          | Industrial/Commercial property use;                                         |
| 2986 |               | <i>.</i>    |                                                                             |
| 2987 |               | 2)          | Target cancer risk greater than 1 in 1,000,000;                             |
| 2988 |               | ,           |                                                                             |
| 2989 |               | 3)          | Target hazard quotient greater than 1;                                      |
| 2990 |               | ,           |                                                                             |
| 2991 |               | 4)          | Engineered barriers;                                                        |
| 2992 |               | <i>,</i>    |                                                                             |
| 2993 |               | 5)          | The point of human exposure is located at a place other than at the source; |
| 2994 |               |             |                                                                             |
| 2995 |               | 6)          | Exclusion of exposure routes; or                                            |
| 2996 |               |             |                                                                             |
| 2997 |               | 7)          | Use of remediation objectives based on a diffusion only mode of             |
| 2998 |               | ,           | contaminant transport for the indoor inhalation exposure route;             |
| 2999 |               |             |                                                                             |
| 3000 |               | <u>8)</u>   | Use of an indoor inhalation building control technology; or                 |
| 3001 |               |             |                                                                             |
| 3002 |               | <u>9)7)</u> | Any combination of the above.                                               |
| 3003 |               |             |                                                                             |
| 3004 | b)            | The A       | gency shall not approve any remediation objective under this Part that is   |
| 3005 | ,             | based       | on the use of institutional controls unless the person has proposed         |
| 3006 |               | institu     | tional controls meeting the requirements of this Subpart and the            |
| 3007 |               | require     | ements of the specific program under which the institutional control is     |
| 3008 |               | propos      | sed. A proposal for approval of institutional controls shall provide        |
| 3009 |               | identif     | ication of the selected institutional controls from among the types         |
| 3010 |               | recogn      | ized in this Subpart.                                                       |
|      |               |             |                                                                             |

| 3011 |               |             |                                                                         |
|------|---------------|-------------|-------------------------------------------------------------------------|
| 3012 | c)            | The follow  | ing instruments may be institutional controls subject to the            |
| 3013 | ,             | requiremen  | ts of this Subpart J and the requirements of the specific program under |
| 3014 |               | which the i | nstitutional control is proposed:                                       |
| 3015 |               |             |                                                                         |
| 3016 |               | 1) No       | Further Remediation Letters:                                            |
| 3017 |               | ,           | ,                                                                       |
| 3018 |               | 2) Env      | vironmental Land Use Controls:                                          |
| 3019 |               | /           | · · · · · · · · · · · · · · · · · · ·                                   |
| 3020 |               | 3) Lan      | d Use Control Memoranda of Agreement:                                   |
| 3021 |               | /           | 8,                                                                      |
| 3022 |               | 4) Ord      | linances adopted and administered by a unit of local government:        |
| 3023 |               | .,          |                                                                         |
| 3024 |               | 5) Agi      | et the case of a property owner (or, in the case of a petroleum         |
| 3025 |               | leak        | king underground storage tank, the owner or operator of the tank) and a |
| 3026 |               | hig         | hway authority with respect to any contamination remaining under        |
| 3027 |               | hig         | hways: and                                                              |
| 3028 |               | 0           |                                                                         |
| 3029 |               | 6) Agr      | eements between a highway authority that is also the property owner     |
| 3030 |               | (or.        | in the case of a petroleum leaking underground storage tank, the        |
| 3031 |               | owi         | her or operator of the tank) and the Agency with respect to any         |
| 3032 |               | con         | tamination remaining under the highways.                                |
| 3033 |               |             |                                                                         |
| 3034 | d)            | No Further  | Remediation Letters and Environmental Land Use Controls that meet       |
| 3035 | ,             | the require | ments of this Subpart and the recording requirements of the program     |
| 3036 |               | under whic  | h remediation is being performed are transferred with the property.     |
| 3037 |               |             |                                                                         |
| 3038 | (Sourc        | e: Amendeo  | d at 36 Ill. Reg., effective )                                          |
| 3039 | Ň             |             |                                                                         |
| 3040 | Section 742.1 | 010 Enviro  | nmental Land Use Controls                                               |
| 3041 |               |             |                                                                         |
| 3042 | a)            | An Enviror  | mental Land Use Control (ELUC) is an institutional control that may     |
| 3043 | ,             | be used und | der this Part to impose land use limitations or requirements related to |
| 3044 |               | environmen  | ntal contamination. ELUCs are only effective when approved by the       |
| 3045 |               | Agency in a | accordance with this Part. Activities or uses that may be limited or    |
| 3046 |               | required in | clude, but are not limited to, prohibition of use of groundwater for    |
| 3047 |               | potable pur | poses, restriction to industrial/commercial uses, operation or          |
| 3048 |               | maintenanc  | e of engineered barriers, indoor inhalation building control            |
| 3049 |               | technologie | es, or worker safety plans. ELUCs may be used in the following          |
| 3050 |               | circumstan  | ces:                                                                    |
| 3051 |               |             |                                                                         |
| 3052 |               | 1) Wh       | en No Further Remediation Letters are not available, including but not  |
| 3053 |               | limi        | ited to when contamination has migrated off-site or outside the         |

,

| 3054 |    |         | remediation site; or                                                           |
|------|----|---------|--------------------------------------------------------------------------------|
| 3055 |    | •       |                                                                                |
| 3056 |    | 2)      | When No Further Remediation Letters are not issued under the program           |
| 3057 |    |         | for which a person is undergoing remediation.                                  |
| 3058 |    |         |                                                                                |
| 3059 | b) | Record  | ling requirements:                                                             |
| 3060 |    |         |                                                                                |
| 3061 |    | 1)      | An ELUC approved by the Agency pursuant to this Section must be                |
| 3062 |    |         | recorded in the Office of the Recorder or Registrar of Titles for the county   |
| 3063 |    |         | in which the property that is the subject of the ELUC is located. A copy       |
| 3064 |    |         | of the ELUC demonstrating that it has been recorded must be submitted to       |
| 3065 |    |         | the Agency before the Agency will issue a no further remediation               |
| 3066 |    |         | determination.                                                                 |
| 3067 |    |         |                                                                                |
| 3068 |    | 2)      | An ELUC approved under this Section will not become effective until            |
| 3069 |    |         | officially recorded in the chain of title for the property that is the subject |
| 3070 |    |         | of the ELUC in accordance with subsection (b)(1) of this Section.              |
| 3071 |    |         |                                                                                |
| 3072 |    | 3)      | Reference to the recorded ELUC must be made in the instrument                  |
| 3073 |    |         | memorializing the Agency's no further remediation determination.               |
| 3074 |    |         | Recording of the no further remediation determination and confirmation of      |
| 3075 |    |         | recording must be in accordance with the requirements of the program           |
| 3076 |    |         | under which the determination was issued.                                      |
| 3077 |    |         |                                                                                |
| 3078 |    | 4)      | The requirements of this Section do not apply to Federally Owned               |
| 3079 |    | ,       | Property for which the Federal Landholding Entity does not have the            |
| 3080 |    |         | authority under federal law to record land use limitations on the chain of     |
| 3081 |    |         | title.                                                                         |
| 3082 |    |         |                                                                                |
| 3083 |    | 5)      | The requirements of this Section apply only to those sites for which a         |
| 3084 |    | ,       | request for a no further remediation determination has not yet been made       |
| 3085 |    |         | to the Agency by January 6, 2001.                                              |
| 3086 |    |         |                                                                                |
| 3087 | c) | Duratio | on:                                                                            |
| 3088 | ,  |         |                                                                                |
| 3089 |    | 1)      | Except as provided in this subsection (c), an ELUC shall remain in effect      |
| 3090 |    | -)      | in perpetuity.                                                                 |
| 3091 |    |         |                                                                                |
| 3092 |    | 2)      | At no time shall any site for which an ELUC has been imposed as a result       |
| 3093 |    | -,      | of remediation activities under this Part be used in a manner inconsistent     |
| 3094 |    |         | with the land use limitation unless attainment of objectives appropriate for   |
| 3095 |    |         | the new land use is achieved and a new no further remediation                  |
| 3096 |    |         | determination has been obtained and recorded in accordance with the            |
|      |    |         |                                                                                |

| 3097 |    |        | progr    | am under which the ELUC was first imposed or the Site Remediation          |
|------|----|--------|----------|----------------------------------------------------------------------------|
| 3098 |    |        | Progr    | ram (35 Ill. Adm. Code 740)- [415 ILCS 58.8(c)]. In addition, the          |
| 3099 |    |        | appro    | priate release or modification of the ELUC must be prepared by the         |
| 3100 |    |        | Agen     | cy and filed on the chain of title for the property that is the subject of |
| 3101 |    |        | the E    | LUC.                                                                       |
| 3102 |    |        |          |                                                                            |
| 3103 |    |        | A)       | For a Leaking Underground Storage Tank (LUST) site under 35                |
| 3104 |    |        | ,        | Ill. Adm. Code 731, or 732, or 734 or a Site Remediation Program           |
| 3105 |    |        |          | site under 35 Ill. Adm. Code 740, an ELUC may be released or               |
| 3106 |    |        |          | modified only if the NFR Letter is also modified under the Site            |
| 3107 |    |        |          | Remediation Program to reflect the change:                                 |
| 3108 |    |        |          |                                                                            |
| 3109 |    |        | B)       | For a RCRA site under 35 III Adm Code 721-730 an ELUC may                  |
| 3110 |    |        | 2)       | be released or modified only if there is also an amended                   |
| 3111 |    |        |          | certification of closure or a permit modification                          |
| 3112 |    |        |          | continuation of closure of a permit mounteauton.                           |
| 3113 |    | 3)     | In add   | dition to any other remedies that may be available, a failure to           |
| 3114 |    | 2)     | comp     | ly with the limitations or requirements of an FLUC may result in           |
| 3115 |    |        | voida    | nce of an Agency no further remediation determination in                   |
| 3116 |    |        | accor    | dance with the program under which the determination was made              |
| 3117 |    |        | The f    | additional with the limitations or requirements of an ELUC                 |
| 3118 |    |        | may      | also be grounds for an enforcement action pursuant to Title VIII of        |
| 3110 |    |        | the A    | et                                                                         |
| 2120 |    |        | uic A    |                                                                            |
| 2121 | 4) | An E   |          | britted to the A coney must match the form and contain the come            |
| 2122 | u) | All E. | LUC Su   | source to the Agency must match the form and contain the same              |
| 2122 |    | subsi  | lin And  | and in F and must contain the following clowerts:                          |
| 2122 |    | mode   | n in Apj | pendix r and must contain the following elements:                          |
| 2124 |    | 1)     | Moree    | a france anter arreaded and dealanction of an analytic arreaded in         |
| 2120 |    | 1)     | Iname    | e of property owners and declaration of property ownership;                |
| 2127 |    | 2)     | Talanat  |                                                                            |
| 3127 |    | 2)     | Identi   | incation of the property to which the ELUC applies by common               |
| 3128 |    |        | addre    | ss, legal description, and Real Estate Tax Index/Parcel Index              |
| 3129 |    |        | Numi     | Der;                                                                       |
| 3130 |    | 2)     |          |                                                                            |
| 3131 |    | 3)     | A ref    | erence to the Bureau of Land LPC numbers or 10-digit identification        |
| 3132 |    |        | numb     | ers under which the remediation was conducted;                             |
| 3133 |    |        |          |                                                                            |
| 3134 |    | 4)     | A stat   | tement of the reason for the land use limitation or requirement            |
| 3135 |    |        | relativ  | ve to protecting human health and the surrounding environment from         |
| 3136 |    |        | soil, g  | groundwater, and/or other environmental contamination;                     |
| 3137 |    |        |          |                                                                            |
| 3138 |    | 5)     | The la   | anguage instituting such land use limitations or requirements;             |
| 3139 |    |        |          |                                                                            |

40.

÷ ÷

| 3140         | 6)  | A state       | ement that the limitations or requirements apply to the current      |
|--------------|-----|---------------|----------------------------------------------------------------------|
| 3141         |     | owner         | s, occupants, and all heirs, successors, assigns, and lessees;       |
| 3142         |     |               |                                                                      |
| 3143         | 7)  | A state       | ement that the limitations or requirements apply in perpetuity or    |
| 3144         |     | until:        |                                                                      |
| 3145         |     |               |                                                                      |
| 3146         |     | A)            | The Agency determines that there is no longer a need for the         |
| 3147         |     |               | ELUC;                                                                |
| 3148         |     |               |                                                                      |
| 3149         |     | B)            | The Agency, upon written request, issues to the site that received   |
| 3150         |     | ŗ             | the no further remediation determination that relies on the ELUC a   |
| 3151         |     |               | new no further remediation determination approving modification      |
| 3152         |     |               | or removal of the limitations or requirements:                       |
| 3153         |     |               | 1 ,                                                                  |
| 3154         |     | C)            | The new no further remediation determination is filed on the chain   |
| 3155         |     | -)            | of title of the site subject to the no further remediation           |
| 3156         |     |               | determination: and                                                   |
| 3157         |     |               |                                                                      |
| 3158         |     | D)            | A release or modification of the land use limitation is filed on the |
| 3159         |     | -)            | chain of title for the property that is the subject of the ELUC:     |
| 3160         |     |               | enant of the for the property that is the subject of the EDOO,       |
| 3161         | 8)  | Scaled        | site maps showing:                                                   |
| 3162         | •)  | ~ • • • • • • |                                                                      |
| 3163         |     | A)            | The legal boundary of the property to which the ELUC applies:        |
| 3164         |     | )             |                                                                      |
| 3165         |     | B)            | The horizontal and vertical extent of contaminants of concern        |
| 3166         |     | 2)            | above applicable remediation objectives for soil and groundwater     |
| 3167         |     |               | and soil gas to which the ELUC applies:                              |
| 3168         |     |               |                                                                      |
| 3169         |     | C)            | Any physical features to which an ELUC applies (e.g. engineered      |
| 3170         |     | 0)            | barriers monitoring wells cans indoor inhalation building control    |
| 3171         |     |               | technologies) and                                                    |
| 3172         |     |               |                                                                      |
| 3173         |     | D)            | The nature location of the source and direction of movement of       |
| 3174         |     | D)            | the contaminants of concern:                                         |
| 3175         |     |               | the containmants of concern,                                         |
| 3176         | 9)  | Δ state       | ment that any information regarding the remediation performed on     |
| 3177         | ~)  | the pro       | merty for which the ELUC is necessary may be obtained from the       |
| 3178         |     | A genc        | y through a request under the Freedom of Information Act [5] II CS   |
| 2170         |     | 1401 m        | nd rules promulated therounder, and                                  |
| 319          |     | 1+0] a        | na ruies promuigated mercunder, and                                  |
| 2100         | 10) | Thada         | ted notorized signatures of the presents evenes or sutherized        |
| 2101<br>2102 | 10) |               | nea, notarized signatures of the property owners or authorized       |
| 3102         |     | agent.        |                                                                      |

.

\$ \_

| 3183  |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3184  | (Sour         | ce: Am  | ended at 36 Ill. Reg., effective )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3185  | × ×           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3186  | Section 742.1 | 1015 O  | rdinances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3187  |               | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3188  | a)            | An or   | dinance adopted by a unit of local government that effectively prohibits the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3189  | ,             | install | ation of potable water supply wells (and the use of such wells) may be used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3190  |               | as an i | institutional control to meet the requirements of Section 742.320(d) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3191  |               | 742.80  | 05(a)(3) if the requirements of this Section are met. A model ordinance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3192  |               | found   | in Appendix G. Ordinances prohibiting the installation of potable water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3193  |               | supply  | wells (and the use of such wells) that do not expressly prohibit the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3194  |               | install | ation of potable water supply wells (and the use of such wells) by units of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3195  |               | local   | government may be acceptable as institutional controls if the requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3196  |               | of this | s Section are met and a Memorandum of Understanding (MOU) is entered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3197  |               | into u  | nder subsection (i) of this Section. For purposes of this Section a unit of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3198  |               | local   | government is considered to be expressly prohibited from installing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3199  |               | using   | potable water supply wells only if the unit of local government is included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3200  |               | in the  | prohibition provision by name. The prohibition required by this Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3201  |               | shall s | satisfy the following requirements at a minimum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3202  |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32.03 |               | 1)      | The prohibition shall not allow exceptions for potable water well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3204  |               | -)      | installation and use other than for the adopting unit of local government:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3205  |               |         | and the set of the set of the support of the support of the set by the set of |
| 3206  |               | 2)      | The prohibition shall apply at all depths and shall not be limited to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3207  |               | -)      | particular aquifers or other geologic formations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3208  |               |         | Partie and addition of caref Boologie roundations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3209  |               | 3)      | If the prohibition does not apply everywhere within the boundaries of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3210  |               | 2)      | unit of local government, the limited area to which the prohibition applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3211  |               |         | shall be easily identifiable and clearly defined by the ordinance (e.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3212  |               |         | narrative descriptions accompanied by maps with legends or labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3213  |               |         | showing prohibition boundaries or narrative descriptions using fixed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3214  |               |         | common reference points such as street names). Boundaries of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3215  |               |         | prohibitions limited by area shall be fixed by the terms of the ordinance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3216  |               |         | and shall not be subject to change without amending the ordinance in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3217  |               |         | which the prohibition has been adopted (e.g., no boundaries defined with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3218  |               |         | reference to zoning districts or the availability of the public water supply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3219  |               |         | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3220  |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3221  |               | 4)      | The prohibition shall not in any way restrict or limit the Agency's approval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3222  |               | - /     | of the use of the ordinance as an institutional control pursuant to this Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3223  |               |         | (e.g., no restrictions based on remediation program participation or no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3224  |               |         | restrictions on persons performing remediation within the prohibition area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3225  |               |         | who may use the ordinance).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

.

\$ ~

| 3227       b)       A request for approval of a local ordinance as an institutional control shall provide the following:         3229       3230       1)       A copy of the ordinance restricting groundwater use certified by an official of the unit of local government in which the site is located that it is a true and accurate copy of the ordinance, muless the Agency and the unit of local government have entered an agreement under subsection (i) of this Section, in which case the request may alternatively reference the MOU. The ordinance mute demonstrate that potable use of groundwater from potable water supply wells is prohibited;         3237       2)       A scaled map or mapsmap(s) delineating the area and extent of groundwater contaminants on concern in which the applicable remediation objectives including any measured data showing concentrations of contaminants of concern in which the applicable remediation objectives are exceeded;         3244       3)       A scaled map delineating the boundaries of all properties under which groundwater is located that which exceeds the applicable groundwater remediation objectives;         3248       4)       Information identifying the current <u>owners(s)</u> of each property identified in subsection (b)(3) of this Section; and         3250       5)       A copy of the proposed written notification to the unit of local government that adopted the ordinance;         3251       5)       A copy of the proposed written notification to the unit of local government that adopted the ordinance;         3252       A)       The name and address of the unit of local government that adopted the ordinance;                                                                        | 3226 |    |          |                                                                                       |                                                                            |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| 3228       the following:         3229       1)       A copy of the ordinance restricting groundwater use certified by an official of the unit of local government in which the site is located that it is a true and accurate copy of the ordinance, unless the Agency and the unit of local government have entered an agreement under subsection (i) of this 3234         3230       1)       A copy of the ordinance, unless the Agency and the unit of local government have entered an agreement under subsection (i) of this 3234         3231       Section, in which case the request may alternatively reference the MOU. The ordinance must demonstrate that potable use of groundwater from potable water supply wells is prohibited;         3236       Ph A scaled <u>map or mapsmap(s)</u> delineating the area and extent of groundwater contamination modeled above the applicable remediation objectives including any measured data showing concentrations of contaminants of concern in which the applicable remediation objectives are exceeded;         3240       Objectives including any measured data showing concentrations of contaminants of concern in which the applicable groundwater remediation objectives;         3241       contaminants of concern in which the applicable groundwater remediation objectives;         3242       a scaled map delineating the boundaries of all properties under which groundwater is located that the averes of a scale and extent of scale the in subsection (b)(3) of this Section; and         3251       5)       A copy of the proposed written notification to the unit of local government that adopted the ordinance and to the current owners identified in subsection (b)(4) of this S                                  | 3227 | b) | A req    | A request for approval of a local ordinance as an institutional control shall provide |                                                                            |  |  |  |  |
| 3229A copy of the ordinance restricting groundwater use certified by an<br>official of the unit of local government in which the site is located that it is<br>a true and accurate copy of the ordinance, unless the Agency and the unit<br>of local government have entered an agreement under subsection (i) of this<br>Section, in which case the request may alternatively reference the MOU.3235The ordinance must demonstrate that potable use of groundwater from<br>potable water supply wells is prohibited;3237A scaled map or mapsmap(s) delineating the area and extent of<br>groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;3247JA scaled map delineating the current <u>ownersowner(s)</u> of each property<br>identified in subsection (b)(3) of this Section; and3250SA copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:32515)A description of the property being sent notice by adequate legal<br>description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3257B)The ordinance's citation;3258B)I he ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use | 3228 | ,  | the fo   | llowing                                                                               |                                                                            |  |  |  |  |
| 32301)A copy of the ordinance restricting groundwater use certified by an<br>official of the unit of local government in which the site is located that it is<br>a true and accurate copy of the ordinance, unless the Agency and the unit<br>of local government have entered an agreement under subsection (i) of this<br>Section, in which case the request may alternatively reference the MOU.<br>The ordinance must demonstrate that potable use of groundwater from<br>potable water supply wells is prohibited;32372)A scaled map or mapsmap(s) delineating the area and extent of<br>groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located <u>thatwhich</u> exceeds the applicable groundwater<br>remediation objectives;32473)A scaled map delineating the current <u>ownersowner(s)</u> of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:32573258B)The ordinance's citation;3259C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;< | 3229 |    |          |                                                                                       |                                                                            |  |  |  |  |
| 3231official of the unit of local government in which the site is located that it is3232a true and accurate copy of the ordinance, unless the Agency and the unit3233of local government have entered an agreement under subsection (i) of this3234Section, in which case the request may alternatively reference the MOU.3235The ordinance must demonstrate that potable use of groundwater from3236potable water supply wells is prohibited;32372)A scaled map or mapsmap(6) delineating the area and extent of3239groundwater commination modeled above the applicable remediation3240objectives including any measured data showing concentrations of3241contaminants of concern in which the applicable remediation objectives3242are exceeded;32433)32443)3245groundwater contamination becitives;3247132484)3249identified in subsection (b)(3) of this Section; and32505)32515)32515)3252A copy of the proposed written notification to the unit of local government3253subsection (b)(4) of this Section that includes the following information:32543)3255A)3260C)3258B)3261C)3262A description of the property being sent notice by adequate legal3263description of the party requesting to use the groundwater3264D)3265I dentificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3230 |    | 1)       | A cor                                                                                 | by of the ordinance restricting groundwater use certified by an            |  |  |  |  |
| 3232a true and accurate copy of the ordinance, unless the Agency and the unit3233of local government have entered an agreement under subsection (i) of this3234Section, in which case the request may alternatively reference the MOU.3235The ordinance must demonstrate that potable use of groundwater from3236potable water supply wells is prohibited;3237Section, in which case the request may alternatively reference the MOU.3236potable water supply wells is prohibited;3237Section, in which case the request may alternatively reference the MOU.32382)A scaled <u>map or mapsmap(s)</u> delineating the area and extent of3239groundwater contamination modeled above the applicable remediation3240objectives including any measured data showing concentrations of3241contaminants of concern in which the applicable remediation objectives3242are exceeded;32443)A scaled map delineating the boundaries of all properties under which3245groundwater is located <u>thatwhich</u> exceeds the applicable groundwater3246remediation objectives;3247Information identifying the current <u>ownersowner(s)</u> of each property32484)Information identifying the current <u>ownersowner(s)</u> of each property3249identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government32515)A copy of the proposed written notification to the unit of local government that adopted the ordinance;3253<                                                                                                                                                                                                                                                                                                                 | 3231 |    | <i>,</i> | offici                                                                                | al of the unit of local government in which the site is located that it is |  |  |  |  |
| 3233of local government have entered an agreement under subsection (i) of this3234Section, in which case the request may alternatively reference the MOU.3235The ordinance must demonstrate that potable use of groundwater from3236potable water supply wells is prohibited;32372)A scaled map or mapsmap(s) delineating the area and extent of3239groundwater contamination modeled above the applicable remediation3240objectives including any measured data showing concentrations of3241contaminants of concern in which the applicable remediation objectives3243are exceeded;32443)A scaled map delineating the boundaries of all properties under which3245groundwater is located thatwhich exceeds the applicable groundwater3246remediation objectives;3247132484)3250A copy of the proposed written notification to the unit of local government32515)A copy of the proposed written notification to the unit of local government that adopted the ordinance and to the current owners identified in3253subsection (b)(4) of this Section that includes the following information:3254A3255A)3260C)3261D3262C)3262C)3263C)3264D)3264J)3265J)3266J)3266J)3267J)3268J)3268J)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3232 |    |          | a true                                                                                | and accurate copy of the ordinance, unless the Agency and the unit         |  |  |  |  |
| 3234Section, in which case the request may alternatively reference the MOU.3235The ordinance must demonstrate that potable use of groundwater from3236potable water supply wells is prohibited;32372)A scaled map or mapsmap(s) delineating the area and extent of32382)A scaled map or mapsmap(s) delineating the area and extent of3240objectives including any measured data showing concentrations of3241contaminants of concern in which the applicable remediation3242are exceeded;32433)A scaled map delineating the boundaries of all properties under which32443)A scaled map delineating the boundaries of all properties under which3245groundwater is located (hatwhich exceeds the applicable groundwater3246remediation objectives;3247324832484)3250A copy of the proposed written notification to the unit of local government32515)A copy of the proposed written notification to the unit of local government3252that adopted the ordinance and to the current owners identified in3253subsection (b)(4) of this Section that includes the following information:32543)The ordinance's citation;3255A)The name and address of the unit of local government that adopted<br>the ordinance;3259C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3260C)A description of the pa                                                                                                                                                                                                                                                                                                                                                                                | 3233 |    |          | of loc                                                                                | al government have entered an agreement under subsection (i) of this       |  |  |  |  |
| 3235The ordinance must demonstrate that potable use of groundwater from<br>potable water supply wells is prohibited;3236potable water supply wells is prohibited;323732382)A scaled map or mapsmep(s) delineating the area and extent of<br>groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;3241contaminants of concern in which the applicable remediation objectives<br>are exceeded;32433)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhieh exceeds the applicable groundwater<br>remediation objectives;32473)A scaled map delineating the current ownersowner(s) of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:32515)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3250225732632515)I description of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that depted<br>the property has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                             | 3234 |    |          | Sectio                                                                                | on, in which case the request may alternatively reference the MOU.         |  |  |  |  |
| 3236potable water supply wells is prohibited;32372)A scaled map or mapsmap(s) delineating the area and extent of<br>groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;32413)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32443)A scaled map delineating the current ownersowner(s) of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:3254<br>3255A)The name and address of the unit of local government that adopted<br>the ordinance;3257<br>3258<br>3260B)The ordinance's citation;3260<br>3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3261<br>3262<br>3264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control;3260<br>3261C)A description of the party requesting to use the ordinance as an<br>institutional control;3261<br>3262D)Identification of the party requesting to use the ordinance as an<br>institutional control;                                                                                                                                                                                                         | 3235 |    |          | The o                                                                                 | rdinance must demonstrate that potable use of groundwater from             |  |  |  |  |
| 32372)A scaled map or mapsmap(s) delineating the area and extent of<br>groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;3240ascaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32461Information identifying the current ownersewner(s) of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:3254A)The name and address of the unit of local government that adopted<br>the ordinance;3257B)The ordinance's citation;3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3261D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                 | 3236 |    |          | potab                                                                                 | le water supply wells is prohibited:                                       |  |  |  |  |
| 32382)A scaled map or mapsmap(s) delineating the area and extent of<br>groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;3241contaminants of concern in which the applicable remediation objectives<br>are exceeded;32433)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;324731Information identifying the current <u>ownersewner(s)</u> of each property<br>identified in subsection (b)(3) of this Section; and325032515)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:3255A)The name and address of the unit of local government that adopted<br>the ordinance;32573258B)The ordinance's citation;3259C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3261366D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                | 3237 |    |          | 1                                                                                     |                                                                            |  |  |  |  |
| 3239groundwater contamination modeled above the applicable remediation<br>objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;32413)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32461Information identifying the current ownersewner(s) of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:3254A)The name and address of the unit of local government that adopted<br>the ordinance;3257B)The ordinance's citation;3258B)The ordinance's citation;3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;32683268                                                                                                                                                                                                                                       | 3238 |    | 2)       | A sca                                                                                 | led map or maps <del>map(s)</del> delineating the area and extent of       |  |  |  |  |
| 3240objectives including any measured data showing concentrations of<br>contaminants of concern in which the applicable remediation objectives<br>are exceeded;3242are exceeded;32433)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;32471nformation identifying the current ownersowner(s) of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:3254A)The name and address of the unit of local government that adopted<br>the ordinance;3257B)The ordinance's citation;3258B)The ordinance's citation;3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                        | 3239 |    | ,        | groun                                                                                 | dwater contamination modeled above the applicable remediation              |  |  |  |  |
| 3241contaminants of concern in which the applicable remediation objectives<br>are exceeded;3242are exceeded;32433)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;3246remediation objectives;3247132484)Information identifying the current ownersowner(s) of each property<br>identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:3254A)The name and address of the unit of local government that adopted<br>the ordinance;3257B)The ordinance's citation;3258B)The ordinance's citation;3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3240 |    |          | objec                                                                                 | tives including any measured data showing concentrations of                |  |  |  |  |
| 3242are exceeded;32433)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater3246remediation objectives;3247132484)3249identified in subsection (b)(3) of this Section; and32505)32515)32525)3253asubsection (b)(4) of this Section that includes the following information:32544)3255A)3256A)3258B)3260C)C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;326332643264D)3265A3266D)3267identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3241 |    |          | conta                                                                                 | minants of concern in which the applicable remediation objectives          |  |  |  |  |
| 324332443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;324693247132484)324913250325132505)32515)325243253132544)32544)32555)3258A)3259325632515)32525)3253732544)32544)3255532588)3260C)3260C)326120326220326313264D)3264D)3264D)326410326410326430326430326430326430326430326430326530326430326632326732326832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3242 |    |          | are ex                                                                                | cceeded:                                                                   |  |  |  |  |
| 32443)A scaled map delineating the boundaries of all properties under which<br>groundwater is located thatwhich exceeds the applicable groundwater3245groundwater is located thatwhich exceeds the applicable groundwater<br>remediation objectives;3247132484)32484)3249identified in subsection (b)(3) of this Section; and325032515)3252A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:325433255A)3258B)3260C)3260C)3261A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;326332643264D)3265D)3266Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3243 |    |          |                                                                                       |                                                                            |  |  |  |  |
| 3245groundwater is located thatwhich exceeds the applicable groundwater3246groundwater is located thatwhich exceeds the applicable groundwater3247information identifying the current ownersowner(s) of each property32484)Information identifying the current ownersowner(s) of each property3249identified in subsection (b)(3) of this Section; and32505)A copy of the proposed written notification to the unit of local government32515)A copy of the proposed written notification to the unit of local government3252that adopted the ordinance and to the current owners identified in3253subsection (b)(4) of this Section that includes the following information:32543255A)3258B)The name and address of the unit of local government that adopted<br>the ordinance;32593260C)3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;32633264D)3264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;32673268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3244 |    | 3)       | A sca                                                                                 | led map delineating the boundaries of all properties under which           |  |  |  |  |
| 3246remediation objectives;3247324832493249325032515)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:325332543255A)The name and address of the unit of local government that adopted<br>the ordinance;32573258B)The ordinance's citation;32693260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;32633264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;3268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3245 |    | ,        | groun                                                                                 | dwater is located that which exceeds the applicable groundwater            |  |  |  |  |
| <ul> <li>3247</li> <li>3248</li> <li>4) Information identifying the current <u>ownersewner(s)</u> of each property identified in subsection (b)(3) of this Section; and</li> <li>3250</li> <li>3251</li> <li>5) A copy of the proposed written notification to the unit of local government that adopted the ordinance and to the current owners identified in subsection (b)(4) of this Section that includes the following information:</li> <li>3254</li> <li>3255</li> <li>A) The name and address of the unit of local government that adopted the ordinance;</li> <li>3256</li> <li>B) The ordinance's citation;</li> <li>3259</li> <li>C) A description of the property being sent notice by adequate legal description, reference to a plat showing the boundaries of the property, or accurate street address;</li> <li>3263</li> <li>D) Identification of the party requesting to use the groundwater ordinance as an institutional control, and a statement that the party has requested approval from the Agency to use the ordinance as an institutional control;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3246 |    |          | remed                                                                                 | liation objectives:                                                        |  |  |  |  |
| 32484)Information identifying the current ownersowner(s) of each property<br>identified in subsection (b)(3) of this Section; and325032515)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:32543255A)The name and address of the unit of local government that adopted<br>the ordinance;32573258B)The ordinance's citation;3259C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3247 |    |          |                                                                                       | 5                                                                          |  |  |  |  |
| <ul> <li>identified in subsection (b)(3) of this Section; and</li> <li>identified in subsection (b)(3) of this Section; and</li> <li>A copy of the proposed written notification to the unit of local government that adopted the ordinance and to the current owners identified in subsection (b)(4) of this Section that includes the following information:</li> <li>subsection (b)(4) of this Section that includes the following information:</li> <li>A) The name and address of the unit of local government that adopted the ordinance;</li> <li>the ordinance;</li> <li>B) The ordinance's citation;</li> <li>C) A description of the property being sent notice by adequate legal description, reference to a plat showing the boundaries of the property, or accurate street address;</li> <li>D) Identification of the party requesting to use the groundwater ordinance as an institutional control, and a statement that the party has requested approval from the Agency to use the ordinance as an institutional control;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3248 |    | 4)       | Inforr                                                                                | nation identifying the current owners <del>owner(s)</del> of each property |  |  |  |  |
| 325032515)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:32533255A)The name and address of the unit of local government that adopted<br>the ordinance;32563256B)The ordinance's citation;32593260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;32633264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3249 |    | ,        | identi                                                                                | fied in subsection (b)(3) of this Section: and                             |  |  |  |  |
| 32515)A copy of the proposed written notification to the unit of local government<br>that adopted the ordinance and to the current owners identified in<br>subsection (b)(4) of this Section that includes the following information:32533255A)The name and address of the unit of local government that adopted<br>the ordinance;3256A)The name and address of the unit of local government that adopted<br>the ordinance;3257B)The ordinance's citation;3259C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3250 |    |          |                                                                                       |                                                                            |  |  |  |  |
| <ul> <li>3252</li> <li>3253</li> <li>3253</li> <li>3254</li> <li>3255</li> <li>A) The name and address of the unit of local government that adopted the ordinance;</li> <li>3256</li> <li>3257</li> <li>3258</li> <li>B) The ordinance's citation;</li> <li>3259</li> <li>3260</li> <li>C) A description of the property being sent notice by adequate legal description, reference to a plat showing the boundaries of the property, or accurate street address;</li> <li>3263</li> <li>3264</li> <li>D) Identification of the party requesting to use the groundwater ordinance as an institutional control, and a statement that the party has requested approval from the Agency to use the ordinance as an institutional control;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3251 |    | 5)       | A cor                                                                                 | by of the proposed written notification to the unit of local government    |  |  |  |  |
| 3253subsection (b)(4) of this Section that includes the following information:3254325532563257325832603260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;32633264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;3268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3252 |    |          | that a                                                                                | dopted the ordinance and to the current owners identified in               |  |  |  |  |
| 32543255A)The name and address of the unit of local government that adopted<br>the ordinance;32573258B)The ordinance's citation;32593260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3253 |    |          | subse                                                                                 | ction (b)(4) of this Section that includes the following information:      |  |  |  |  |
| 3255A)The name and address of the unit of local government that adopted<br>the ordinance;32573258B)The ordinance's citation;32593260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3254 |    |          |                                                                                       |                                                                            |  |  |  |  |
| 3256the ordinance;325732583258B)3260C)3260C)32613262326332633264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;3268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3255 |    |          | A)                                                                                    | The name and address of the unit of local government that adopted          |  |  |  |  |
| 32573258B)The ordinance's citation;32593260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;32633264D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;3268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3256 |    |          | ,                                                                                     | the ordinance;                                                             |  |  |  |  |
| 3258B)The ordinance's citation;32593260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;32683268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3257 |    |          |                                                                                       | ,<br>,                                                                     |  |  |  |  |
| <ul> <li>3259</li> <li>3260</li> <li>3261</li> <li>3261</li> <li>3262</li> <li>3263</li> <li>3264</li> <li>3265</li> <li>3266</li> <li>3266</li> <li>3266</li> <li>3267</li> <li>3268</li> <li>C) A description of the property being sent notice by adequate legal description, reference to a plat showing the boundaries of the property, or accurate street address;</li> <li>3263</li> <li>3264</li> <li>D) Identification of the party requesting to use the groundwater ordinance as an institutional control, and a statement that the party has requested approval from the Agency to use the ordinance as an institutional control;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3258 |    |          | B)                                                                                    | The ordinance's citation;                                                  |  |  |  |  |
| 3260C)A description of the property being sent notice by adequate legal<br>description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3259 |    |          | ,                                                                                     | ,<br>,                                                                     |  |  |  |  |
| 3261description, reference to a plat showing the boundaries of the<br>property, or accurate street address;3263D)Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3260 |    |          | C)                                                                                    | A description of the property being sent notice by adequate legal          |  |  |  |  |
| 3262property, or accurate street address;326332643264D)3265Identification of the party requesting to use the groundwater<br>ordinance as an institutional control, and a statement that the party<br>has requested approval from the Agency to use the ordinance as an<br>institutional control;32673268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3261 |    |          | ,                                                                                     | description, reference to a plat showing the boundaries of the             |  |  |  |  |
| 32633264326532653266326632673268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3262 |    |          |                                                                                       | property, or accurate street address;                                      |  |  |  |  |
| 3264D)Identification of the party requesting to use the groundwater3265ordinance as an institutional control, and a statement that the party3266has requested approval from the Agency to use the ordinance as an3267institutional control;32683268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3263 |    |          |                                                                                       |                                                                            |  |  |  |  |
| 3265ordinance as an institutional control, and a statement that the party3266has requested approval from the Agency to use the ordinance as an3267institutional control;32683268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3264 |    |          | D)                                                                                    | Identification of the party requesting to use the groundwater              |  |  |  |  |
| 3266has requested approval from the Agency to use the ordinance as an<br>institutional control;3267institutional control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3265 |    |          | /                                                                                     | ordinance as an institutional control, and a statement that the party      |  |  |  |  |
| 3267 institutional control;<br>3268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3266 |    |          |                                                                                       | has requested approval from the Agency to use the ordinance as an          |  |  |  |  |
| 3268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3267 |    |          |                                                                                       | institutional control;                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3268 |    |          |                                                                                       |                                                                            |  |  |  |  |

ti 5 4.

| 3269<br>3270<br>3271                                                         |    | <ul> <li>E) A statement that use of the ordinance as an institutional control<br/>allows contamination above groundwater ingestion remediation<br/>objectives to remain in groundwater beneath the affected</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3272<br>3273<br>3274                                                         |    | properties, and that the ordinance strictly prohibits human and domestic consumption of the groundwater;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3275<br>3276<br>3277                                                         |    | F) A statement as to the nature of the release and response action with the site name, site address, and Agency site number or Illinois inventory identification number; and                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3278<br>3279<br>3280<br>3281<br>3282<br>3283                                 |    | G) A statement that more information about the remediation site may<br>be obtained by contacting the party requesting the use of the<br>groundwater ordinance as an institutional control or by submitting<br>a FOIA request to the Agency.                                                                                                                                                                                                                                                                                                                                                                              |
| 3283<br>3284<br>3285<br>3286<br>3287<br>3288<br>3289<br>3290<br>3291<br>3292 | c) | Written notification proposed pursuant to subsection (b)(5) of this Section must be sent to the unit of local government that adopted the ordinance, as well as to all current property owners identified in subsection (b)(4). Written proof that the notification was sent to the unit of local government and the property owners shall be submitted to the Agency within 45 days from the date the Agency's no further remediation determination is recorded. Such proof may consist of the return card from certified mail, return receipt requested, a notarized certificate of service, or a notarized affidavit. |
| 3293<br>3294<br>3295<br>3296<br>3297                                         | d) | Unless the Agency and the unit of local government have entered into a MOU under subsection (i) of this Section, the current owner or successors in interest of a site who have received approval of use of an ordinance as an institutional control under this Section shall:                                                                                                                                                                                                                                                                                                                                           |
| 3298<br>3299<br>3300<br>3301<br>3302                                         |    | 1) Monitor activities of the unit of local government relative to variance requests or changes in the ordinance relative to the use of potable groundwater at properties identified in subsection (b)(3) of this Section; and                                                                                                                                                                                                                                                                                                                                                                                            |
| 3303<br>3304<br>3305                                                         |    | 2) Notify the Agency of any approved variance requests or ordinance changes within 30 days after the date such action has been approved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3306<br>3307<br>3308<br>3309<br>3310                                         | e) | The information required in subsections $(b)(1)$ through $(b)(5)$ of this Section and<br>the Agency letter approving the groundwater remediation objective shall be<br>submitted to the unit of local government. Proof that the information has been<br>filed with the unit of local government shall be provided to the Agency.                                                                                                                                                                                                                                                                                        |
| 3311                                                                         | f) | Any ordinance or MOU used as an institutional control pursuant to this Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

¢ ,

| 3312<br>3313<br>3314<br>3315<br>3316 |        | shall be recorded in the Office of the Recorder or Registrar of Titles of the county<br>in which the site is located together with the instrument memorializing the<br>Agency's no further remediation determination pursuant to the specific program<br>within 45 days after receipt of the Agency's no further remediation determination. |
|--------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2217                                 | $\sim$ | An institutional control approved under this Section shall not become offective                                                                                                                                                                                                                                                             |
| 2210                                 | g)     | All institutional control approved under this Section shall not become effective                                                                                                                                                                                                                                                            |
| 2210                                 |        | until officially recorded in accordance with subsection (1) of this section. The                                                                                                                                                                                                                                                            |
| 3319                                 |        | person receiving the approval shall obtain and submit to the Agency within 30                                                                                                                                                                                                                                                               |
| 3320                                 |        | days after recording a copy of the institutional control demonstrating that it has                                                                                                                                                                                                                                                          |
| 3321                                 |        | been recorded.                                                                                                                                                                                                                                                                                                                              |
| 3322                                 | 1 \    |                                                                                                                                                                                                                                                                                                                                             |
| 3323                                 | n)     | The following shall be grounds for voidance of the ordinance as an institutional                                                                                                                                                                                                                                                            |
| 3324                                 |        | control and the instrument memorializing the Agency's no further remediation                                                                                                                                                                                                                                                                |
| 3325                                 |        | determination:                                                                                                                                                                                                                                                                                                                              |
| 3326                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3327                                 |        | 1) Modification of the ordinance by the unit of local government to allow                                                                                                                                                                                                                                                                   |
| 3328                                 |        | potable use of groundwater;                                                                                                                                                                                                                                                                                                                 |
| 3329                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3330                                 |        | 2) Approval of a site-specific request, such as a variance, to allow potable                                                                                                                                                                                                                                                                |
| 3331                                 |        | use of groundwater at a site identified in subsection (b)(3) of this Section;                                                                                                                                                                                                                                                               |
| 3332                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3333                                 |        | 3) Violation of the terms of an institutional control recorded under Section                                                                                                                                                                                                                                                                |
| 3334                                 |        | 742.1005 or Section 742.1010; or                                                                                                                                                                                                                                                                                                            |
| 3335                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3336                                 |        | 4) Failure to provide notification and proof of such notification pursuant to                                                                                                                                                                                                                                                               |
| 3337                                 |        | subsection (c) of this Section.                                                                                                                                                                                                                                                                                                             |
| 3338                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3339                                 | i)     | The Agency and a unit of local government may enter into a MOU under this                                                                                                                                                                                                                                                                   |
| 3340                                 |        | Section if the unit of local government has adopted an ordinance satisfying                                                                                                                                                                                                                                                                 |
| 3341                                 |        | subsection (a) of this Section and if the requirements of this subsection are met.                                                                                                                                                                                                                                                          |
| 3342                                 |        | The MOU submitted to the Agency must match the form and contain the same                                                                                                                                                                                                                                                                    |
| 3343                                 |        | substance as the model in Appendix H and shall include the following:                                                                                                                                                                                                                                                                       |
| 3344                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3345                                 |        | 1) Identification of the authority of the unit of local government to enter the                                                                                                                                                                                                                                                             |
| 3346                                 |        | MOU;                                                                                                                                                                                                                                                                                                                                        |
| 3347                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3348                                 |        | 2) Identification of the legal boundaries, or equivalent, under which the                                                                                                                                                                                                                                                                   |
| 3349                                 |        | ordinance is applicable;                                                                                                                                                                                                                                                                                                                    |
| 3350                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3351                                 |        | 3) A certified copy of the ordinance;                                                                                                                                                                                                                                                                                                       |
| 3352                                 |        |                                                                                                                                                                                                                                                                                                                                             |
| 3353                                 |        | 4) A commitment by the unit of local government to notify the Agency of                                                                                                                                                                                                                                                                     |
| 3354                                 |        | any variance requests or proposed ordinance changes at least 30 days prior                                                                                                                                                                                                                                                                  |

.....

р ў Ф

| 3355 |               | t         | to the date the local government is scheduled to take action on the request |                                                                        |  |  |
|------|---------------|-----------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| 3330 |               | C         | or prop                                                                     | osed change;                                                           |  |  |
| 3357 |               | 5         | •                                                                           |                                                                        |  |  |
| 3338 |               | 5) A      | A com                                                                       | mitment by the unit of local government to maintain a registry of all  |  |  |
| 3359 |               | S         | sites wi                                                                    | ithin the unit of local government that have received no further       |  |  |
| 3360 |               | ľ         | remedia                                                                     | ation determinations pursuant to specific programs; and                |  |  |
| 3361 |               | <i></i>   |                                                                             |                                                                        |  |  |
| 3362 |               | 6) I      | t the o                                                                     | rdinance does not expressly prohibit the installation of potable       |  |  |
| 3363 |               | V         | vater s                                                                     | upply wells (and the use of such wells) by units of local              |  |  |
| 3364 |               | g         | governi                                                                     | ment, a commitment by the unit of local government:                    |  |  |
| 3365 |               |           |                                                                             |                                                                        |  |  |
| 3366 |               | A         | 4)                                                                          | To review the registry of sites established under subsection $(i)(5)$  |  |  |
| 3367 |               |           |                                                                             | of this Section prior to siting potable water supply wells within the  |  |  |
| 3368 |               |           |                                                                             | area covered by the ordinance;                                         |  |  |
| 3369 |               |           |                                                                             |                                                                        |  |  |
| 3370 |               | E         | 3)                                                                          | To determine whether the potential source of potable water may be      |  |  |
| 3371 |               |           |                                                                             | or has been affected by contamination left in place at those sites;    |  |  |
| 3372 |               |           |                                                                             | and                                                                    |  |  |
| 3373 |               |           |                                                                             |                                                                        |  |  |
| 3374 |               | (         | C)                                                                          | To take whatever steps are necessary to ensure that the potential      |  |  |
| 3375 |               |           |                                                                             | source of potable water is protected from the contamination or         |  |  |
| 3376 |               |           |                                                                             | treated before it is used as a potable water supply.                   |  |  |
| 3377 |               |           |                                                                             | 1 117                                                                  |  |  |
| 3378 | i)            | A groun   | dwater                                                                      | r ordinance may not be used to exclude the indoor inhalation           |  |  |
| 3379 |               | exposure  | e route                                                                     | ······································                                 |  |  |
| 3380 |               |           |                                                                             | _                                                                      |  |  |
| 3381 | (Sourc        | e: Amen   | ded at                                                                      | 36 Ill. Reg. effective )                                               |  |  |
| 3382 | (             |           |                                                                             | <u> </u>                                                               |  |  |
| 3383 |               |           | SU                                                                          | BPART K: ENGINEERED BARRIERS                                           |  |  |
| 3384 |               |           | ~ 0                                                                         |                                                                        |  |  |
| 3385 | Section 742.1 | 105 Eng   | ineere                                                                      | d Barrier Requirements                                                 |  |  |
| 3386 |               | 100 24g   |                                                                             |                                                                        |  |  |
| 3387 | a)            | Natural : | attenua                                                                     | ation access controls and point of use treatment shall not be          |  |  |
| 3388 | u)            | consider  | ed eno                                                                      | rineered harriers. Engineered harriers may not be used to prevent      |  |  |
| 3389 |               | direct hu | iman e                                                                      | when the second water without the use of institutional controls        |  |  |
| 3300 |               | uncethu   |                                                                             | xposure to groundwater without the use of institutional controls.      |  |  |
| 3301 | b)            | For nurn  | 10585 O                                                                     | f determining remediation objectives under Tier 1 engineered           |  |  |
| 2202 | 0)            | borriera  | ore not                                                                     | t recognized                                                           |  |  |
| 2202 |               | Uairiers  | are not                                                                     | t recognized.                                                          |  |  |
| 2204 |               | The fall  |                                                                             | an air a small harming and many series of family stars of a slowlastic |  |  |
| 2205 | c)            |           | uwing                                                                       | engineered barriers are recognized for purposes of calculating         |  |  |
| 2272 |               | remediat  | uon ob                                                                      | gecuves that exceed residential remediation objectives:                |  |  |
| 3396 |               | 1) **     | ۰. r                                                                        |                                                                        |  |  |
| 3397 |               | 1) F      | or the                                                                      | soil component of the groundwater ingestion exposure route, the        |  |  |

.

¢ ;

| 3398 |    | follow  | ving eng                                                        | ineered barriers are recognized if they prevent completion of |  |
|------|----|---------|-----------------------------------------------------------------|---------------------------------------------------------------|--|
| 3399 |    | the exp | posure j                                                        | pathway:                                                      |  |
| 3400 |    |         |                                                                 |                                                               |  |
| 3401 |    | A)      | Caps of                                                         | or walls constructed of compacted clay, asphalt, concrete or  |  |
| 3402 |    |         | other 1                                                         | naterial approved by the Agency; and                          |  |
| 3403 |    |         |                                                                 |                                                               |  |
| 3404 |    | B)      | Perma                                                           | nent structures such as buildings and highways.               |  |
| 3405 |    |         |                                                                 |                                                               |  |
| 3406 | 2) | For the | e soil in                                                       | gestion exposure route, the following engineered barriers are |  |
| 3407 |    | recogr  | nized if                                                        | they prevent completion of the exposure pathway:              |  |
| 3408 |    |         |                                                                 |                                                               |  |
| 3409 |    | A)      | Caps o                                                          | or walls constructed of compacted clay, asphalt, concrete, or |  |
| 3410 |    |         | other 1                                                         | naterial approved by the Agency;                              |  |
| 3411 |    |         |                                                                 |                                                               |  |
| 3412 |    | B)      | Perma                                                           | nent structures such as buildings and highways; and           |  |
| 3413 |    |         |                                                                 |                                                               |  |
| 3414 |    | C)      | Soil, s                                                         | and, gravel, or other geologic materials that:                |  |
| 3415 |    |         |                                                                 |                                                               |  |
| 3416 |    |         | i)                                                              | Cover the contaminated media;                                 |  |
| 3417 |    |         | ,                                                               |                                                               |  |
| 3418 |    |         | ii)                                                             | Meet the soil remediation objectives under Subpart E for      |  |
| 3419 |    |         |                                                                 | residential property for contaminants of concern; and         |  |
| 3420 |    |         |                                                                 |                                                               |  |
| 3421 |    |         | iii)                                                            | Are a minimum of three feet in depth.                         |  |
| 3422 |    |         |                                                                 | *                                                             |  |
| 3423 | 3) | For the | e <u>outdo</u>                                                  | or inhalation exposure route, the following engineered        |  |
| 3424 | ,  | barrier | riers are recognized if they prevent completion of the exposure |                                                               |  |
| 3425 |    | pathwa  | way:                                                            |                                                               |  |
| 3426 |    | -       | •                                                               |                                                               |  |
| 3427 |    | A)      | Caps of                                                         | or walls constructed of compacted clay, asphalt, concrete, or |  |
| 3428 |    |         | other r                                                         | naterial approved by the Agency;                              |  |
| 3429 |    |         |                                                                 |                                                               |  |
| 3430 |    | B)      | Perma                                                           | nent structures such as buildings and highways; and           |  |
| 3431 |    | ,       |                                                                 |                                                               |  |
| 3432 |    | C)      | Soil, s                                                         | and, gravel, or other geologic materials that:                |  |
| 3433 |    | ,       |                                                                 |                                                               |  |
| 3434 |    |         | i)                                                              | Cover the contaminated media;                                 |  |
| 3435 |    |         |                                                                 |                                                               |  |
| 3436 |    |         | ii)                                                             | Meet the soil remediation objectives under Subpart E for      |  |
| 3437 |    |         | ,                                                               | residential property for contaminants of concern: and         |  |
| 3438 |    |         |                                                                 |                                                               |  |
| 3439 |    |         | iii)                                                            | Are a minimum of ten feet in depth and not within ten feet    |  |
| 3440 |    |         | ,                                                               | of any manmade pathway.                                       |  |

| 3441 |               |                |                                                                    |                             |                   |             |                           |
|------|---------------|----------------|--------------------------------------------------------------------|-----------------------------|-------------------|-------------|---------------------------|
| 3442 |               | 4)             | For the                                                            | e ingestion of ground       | lwater exposur    | e route, th | e following engineered    |
| 3443 |               | ,              | barriers are recognized if they prevent completion of the exposure |                             |                   |             |                           |
| 3444 |               |                | pathw                                                              | ay:                         | <i>v</i> 1        | T           | 1                         |
| 3445 |               |                | •                                                                  |                             |                   |             |                           |
| 3446 |               |                | A)                                                                 | Slurry walls; and           |                   |             |                           |
| 3447 |               |                |                                                                    | •                           |                   |             |                           |
| 3448 |               |                | B)                                                                 | Hydraulic control c         | of groundwater.   |             |                           |
| 3449 |               |                | ,                                                                  |                             | e                 |             |                           |
| 3450 | d)            | Unless         | otherw                                                             | vise prohibited under       | Section 742.1     | 100, any c  | other type of engineered  |
| 3451 |               | barrier        | may be                                                             | e proposed if it will b     | be as effective a | as the opti | ions listed in subsection |
| 3452 |               | (c) of t       | his Sec                                                            | tion.                       |                   | *           |                           |
| 3453 |               |                |                                                                    |                             |                   |             |                           |
| 3454 | (Sourc        | e: Ame         | ended a                                                            | t 36 Ill. Reg.              | , effective       |             | )                         |
| 3455 |               |                |                                                                    |                             | -                 |             |                           |
| 3456 |               | <u>SU</u>      | <b>JBPAR</b>                                                       | T L: BUILDING CO            | ONTROL TEC        | HNOLOG      | GIES                      |
| 3457 |               |                |                                                                    |                             |                   |             |                           |
| 3458 | Section 742.1 | 200 Bu         | uilding                                                            | Control Technologi          | es                |             |                           |
| 3459 |               |                |                                                                    |                             | _                 |             |                           |
| 3460 | <u>a)</u>     | Any pe         | erson w                                                            | ho develops remedia         | tion objectives   | under thi   | s Part based on           |
| 3461 |               | buildin        | ng contr                                                           | ol technologies shall       | meet the requi    | irements o  | of this Subpart and the   |
| 3462 |               | require        | ments                                                              | of Subpart J relative       | to institutional  | controls.   | -                         |
| 3463 |               |                |                                                                    | -                           |                   |             |                           |
| 3464 | <u>b)</u>     | The Ag         | gency s                                                            | hall not approve any        | remediation ol    | bjective u  | nder this Part that is    |
| 3465 |               | based of       | on the u                                                           | se of building control      | ol technologies   | unless the  | e person has proposed     |
| 3466 |               | <u>buildin</u> | ig contr                                                           | ol technologies meet        | ting the require  | ments of    | this Subpart or Subpart   |
| 3467 |               | I and S        | ubpart                                                             | J relative to institution   | onal controls.    |             | • · · · · · · •           |
| 3468 |               |                |                                                                    |                             |                   |             |                           |
| 3469 | <u>c)</u>     | The us         | e of bui                                                           | lding control techno        | logies can be r   | ecognized   | in determining            |
| 3470 |               | <u>remedi</u>  | ation o                                                            | bjectives only if the       | building contro   | l technolo  | ogies are intended for    |
| 3471 |               | use as         | part of                                                            | the final corrective a      | ction.            |             | -                         |
| 3472 |               |                |                                                                    |                             |                   |             |                           |
| 3473 | <u>d)</u>     | <u>An app</u>  | proved l                                                           | ouilding control tech       | nology shall be   | in place    | and operational prior to  |
| 3474 |               | <u>human</u>   | occupa                                                             | incy.                       |                   | -           | • · · · · • • • •         |
| 3475 |               |                |                                                                    |                             |                   |             |                           |
| 3476 | <u>e)</u>     | Any no         | o furthe                                                           | r remediation determ        | ination based u   | upon the u  | use of building control   |
| 3477 |               | technol        | <u>logies s</u>                                                    | hall require effective      | e maintenance (   | of the buil | ding control              |
| 3478 |               | technol        | <u>logy.</u> I                                                     | <u>The maintenance requ</u> | irements shall    | be includ   | ed in an institutional    |
| 3479 |               | <u>control</u> | under                                                              | Subpart J. This insti       | tutional contro   | l shall add | lress provisions for      |
| 3480 |               | inopera        | <u>ability b</u>                                                   | y requiring the follo       | wing if the bui   | lding cont  | trol technology is        |
| 3481 |               | rendere        | ed inope                                                           | erable:                     |                   |             |                           |
| 3482 |               |                | -                                                                  |                             |                   |             |                           |

F F

| 3483 |               | <u>1)</u>       | The site owner/operator shall notify building occupants and workers in                |
|------|---------------|-----------------|---------------------------------------------------------------------------------------|
| 3484 |               |                 | advance of intrusive activities. The notification shall enumerate the                 |
| 3485 |               |                 | contaminant of concern known to be present;                                           |
| 3486 |               |                 |                                                                                       |
| 3487 |               | <u>2)</u>       | The site owner/operator shall require building occupants and workers to               |
| 3488 |               |                 | implement protective measures consistent with good industrial hygiene                 |
| 3489 |               |                 | practice; and                                                                         |
| 3490 |               |                 |                                                                                       |
| 3491 |               | <u>3)</u>       | For a school, the site owner/operator shall notify the Agency upon any                |
| 3492 |               |                 | building control technology being rendered inoperable. For the purposes               |
| 3493 |               |                 | of this subsection (e)(3), the term "school" means any public educational             |
| 3494 |               |                 | facility in Illinois, including grounds and/or campus, consisting of                  |
| 3495 |               |                 | students, comprising one or more grade groups or other identifiable                   |
| 3496 |               |                 | groups, organized as one unit with one or more teachers to give instruction           |
| 3497 |               |                 | of a defined type. Public educational facility includes, but is not limited           |
| 3498 |               |                 | to, primary and secondary (kindergarten-12 <sup>th</sup> grade), charter, vocational, |
| 3499 |               |                 | alternative, and special education schools. Public educational facility does          |
| 3500 |               |                 | not include junior colleges, colleges, or universities.                               |
| 3501 |               |                 |                                                                                       |
| 3502 | f)            | Failure         | to install or maintain a building control technology in accordance with a             |
| 3503 |               | no furtl        | her remediation determination shall be grounds for voidance of the                    |
| 3504 |               | determ          | ination and the instrument memorializing the Agency's no further                      |
| 3505 |               | remedia         | ation determination.                                                                  |
| 3506 |               |                 |                                                                                       |
| 3507 | (Sourc        | e: Adde         | ed at 36 Ill. Reg, effective)                                                         |
| 3508 |               |                 |                                                                                       |
| 3509 | Section 742.1 | <u>205 Bu</u>   | ilding Control Technology Proposals                                                   |
| 3510 |               |                 |                                                                                       |
| 3511 | A proposal to | <u>use a bu</u> | ilding control technology under this Subpart shall include the following              |
| 3512 | information:  |                 |                                                                                       |
| 3513 |               |                 |                                                                                       |
| 3514 | <u>a)</u>     | A desci         | ription of the site and physical site characteristics;                                |
| 3515 |               |                 |                                                                                       |
| 3516 | <u>b)</u>     | The cu          | rrent extent and modeled migration of contamination;                                  |
| 3517 |               |                 |                                                                                       |
| 3518 | <u>c)</u>     | <u>Geolog</u>   | y, including soil types;                                                              |
| 3519 |               |                 |                                                                                       |
| 3520 | <u>d)</u>     | <u>Results</u>  | and locations of sampling events;                                                     |
| 3521 |               |                 |                                                                                       |
| 3522 | <u>e)</u>     | Scaled          | map of the area, including all buildings and man-made pathways;                       |
| 3523 |               |                 |                                                                                       |
| 3524 | <u>f</u> )    | A desci         | ription of building characteristics and methods of construction, including a          |
| 3525 |               | descrip         | tion of man-made pathways; and                                                        |

| 3526 |              |                        |                                                                        |
|------|--------------|------------------------|------------------------------------------------------------------------|
| 3527 | g)           | Present and p          | post-remediation uses of the land above the area of contamination.     |
| 3528 |              | including hur          | man receptors at risk.                                                 |
| 3529 |              |                        |                                                                        |
| 3530 | (Sour        | rce: Added at 3        | 6 Ill. Reg, effective)                                                 |
| 3531 |              |                        |                                                                        |
| 3532 | Section 742. | <u>1210 Building</u>   | <u>Control Technology Requirements</u>                                 |
| 3533 |              |                        |                                                                        |
| 3534 | <u>a)</u>    | Natural atten          | uation, access controls, and point of use treatment shall not be       |
| 3535 |              | considered by          | uilding control technologies.                                          |
| 3536 |              |                        |                                                                        |
| 3537 | <u>b)</u>    | For purposes           | of determining compliance with remediation objectives under Tier       |
| 3538 |              | <u>1, building co</u>  | ontrol technologies are not recognized.                                |
| 3539 |              |                        |                                                                        |
| 3540 | <u>c)</u>    | <u>The followin</u>    | g building control technologies are recognized for purposes of         |
| 3541 |              | pathway excl           | usion under Section 742.312.                                           |
| 3542 |              |                        |                                                                        |
| 3543 |              | <u>1)</u> <u>Sub-s</u> | lab depressurization (SSD) systems meeting the following               |
| 3544 |              | requir                 | <u>cements:</u>                                                        |
| 3545 |              |                        |                                                                        |
| 3546 |              | <u>A)</u>              | A suction pit is installed that is at least two cubic feet and extends |
| 3547 |              |                        | at least 6 inches below the slab (larger suction pits may be           |
| 3548 |              |                        | excavated as needed to achieve the performance criteria in             |
| 3549 |              |                        | subsection $(c)(1)(B)$ ;                                               |
| 3550 |              |                        |                                                                        |
| 3551 |              | <u>B)</u>              | A PVC pipe of at least 3 inches in diameter extends from the           |
| 3552 |              |                        | suction pit to the intake side of an in-line fan capable of achieving  |
| 3553 |              |                        | a static vacuum of at least 0.25 inches water column (wc) at the       |
| 3554 |              |                        | suction point and measureable vacuum at the farthest edges of the      |
| 3555 |              |                        | area served by the suction pit under worst case conditions (all        |
| 3556 |              |                        | exhaust fans and heating systems running during cold weather) as       |
| 3557 |              |                        | determined by a differential pressure reading of at least -0.003       |
| 3558 |              |                        | inches we below the slab or visible downward flow of air at test       |
| 3559 |              |                        | holes using chemical or smoke sticks;                                  |
| 3560 |              |                        |                                                                        |
| 3561 |              | C)                     | All visible cracks and joints in the slab (including the place where   |
| 3562 |              |                        | the pipe exits the slab) and foundation walls are sealed:              |
| 3563 |              |                        |                                                                        |
| 3564 |              | D)                     | The pipe exhausts outside the building at least 10 feet above          |
| 3565 |              | <u> </u>               | ground and at least 10 feet from any door or window: and               |
| 3566 |              |                        |                                                                        |
| 3567 |              | E)                     | Additional suction pits meeting the requirements of subsection         |
| 3568 |              | <i>=</i> 7             | (c)(1)(A) shall be installed as necessary to achieve measureable       |

\*

| 3569 |           |              | vacuum below the slab in all areas, including in any area where       |
|------|-----------|--------------|-----------------------------------------------------------------------|
| 3570 |           |              | subsurface or foundation conditions (e.g., a sub-slab grade beam)     |
| 3571 |           |              | prevent adequate suction field extension.                             |
| 3572 |           |              |                                                                       |
| 3573 | <u>2)</u> | <u>Sub-r</u> | nembrane depressurization (SMD) systems meeting the following         |
| 3574 |           | requir       | rements:                                                              |
| 3575 |           | -            |                                                                       |
| 3576 |           | A)           | A non-woven geotextile is installed on the exposed earthen            |
| 3577 |           |              | material;                                                             |
| 3578 |           |              |                                                                       |
| 3579 |           | B)           | A cross-laminated polyethylene membrane liner at least 0.10 mm        |
| 3580 |           |              | (or 4 mil) thick is placed over the geotextile and sealed to          |
| 3581 |           |              | foundation walls using a low volatile adhesive that is                |
| 3582 |           |              | recommended by the liner manufacturer (e.g., acrylic latex            |
| 3583 |           |              | adhesive):                                                            |
| 3584 |           |              |                                                                       |
| 3585 |           | C)           | A 3 inch diameter PVC pipe extends from a hole cut in the liner to    |
| 3586 |           |              | the intake side of an in-line fan canable of achieving a static       |
| 3587 |           |              | vacuum of at least 0.25 inches water column (wc) at the riser pipe    |
| 3588 |           |              | and measureable vacuum at the farthest edges of the liner under       |
| 3589 |           |              | worst case conditions (all exhaust fans running during cold           |
| 3590 |           |              | weather) as determined by a differential pressure reading of at least |
| 3591 |           |              | -0.003 inches we below the liner or visible downward flow of air      |
| 3592 |           |              | in test holes using chemical or smoke sticks:                         |
| 3593 |           |              |                                                                       |
| 3594 |           | D)           | The pipe is sealed to the liner:                                      |
| 3595 |           | <i>_</i> _   |                                                                       |
| 3596 |           | E)           | The pipe exhausts outside the building at least 10 feet above         |
| 3597 |           |              | ground and at least 10 feet from any door or window: and              |
| 3598 |           |              |                                                                       |
| 3599 |           | F)           | No leaks based on smoke stick tests along the entire perimeter of     |
| 3600 |           |              | the liner (i.e., at all sealed edges) with the fan running. Where     |
| 3601 |           |              | leaks are identified, appropriate repairs are undertaken and smoke    |
| 3602 |           |              | stick testing repeated until no leaks are detected.                   |
| 3603 |           |              | <u></u>                                                               |
| 3604 | 3)        | Meml         | brane barrier systems when placed below concrete slabs meeting the    |
| 3605 |           | follov       | ving requirements:                                                    |
| 3606 |           |              |                                                                       |
| 3607 |           | A)           | The membrane is impermeable to volatile chemicals and is not less     |
| 3608 |           | <i>L</i>     | than 1.5 mm (or 60 mil) thick:                                        |
| 3609 |           |              |                                                                       |
| 3609 |           |              |                                                                       |

| 3610 | <u>B)</u>            | The membrane is sealed to foundation walls and any penetrating       |
|------|----------------------|----------------------------------------------------------------------|
| 3611 |                      | pipes according to membrane manufacturer/installer                   |
| 3612 |                      | recommendations;                                                     |
| 3613 |                      |                                                                      |
| 3614 | <u>C)</u>            | The membrane is installed in accordance with the manufacturer's      |
| 3615 |                      | requirements and by an applicator trained and approved by the        |
| 3616 |                      | manufacturer;                                                        |
| 3617 |                      |                                                                      |
| 3618 | <u>D)</u>            | A smoke test of the membrane system (where smoke is injected         |
| 3619 |                      | below the installed liner prior to slab installation), in accordance |
| 3620 |                      | with the manufacturer's requirements, is performed to ensure no      |
| 3621 |                      | leaks exist. Where leaks are identified, appropriate repairs are     |
| 3622 |                      | undertaken and smoke testing repeated until no leaks are detected;   |
| 3623 |                      |                                                                      |
| 3624 | <u>E)</u>            | The membrane is puncture resistant to slab installation              |
| 3625 |                      | construction activities and protected by sand layers or geotextiles  |
| 3626 |                      | as recommended by the manufacturer; and                              |
| 3627 |                      |                                                                      |
| 3628 | <u>F)</u>            | Construction activities following membrane installation do not       |
| 3629 |                      | damage, puncture or tear the membrane or otherwise compromise        |
| 3630 |                      | its ability to prevent the migration of volatile chemicals.          |
| 3631 |                      |                                                                      |
| 3632 | <u>4) Vente</u>      | d raised floors meeting the following requirements:                  |
| 3633 |                      |                                                                      |
| 3634 | <u>A)</u>            | An interconnected void system below the slab sufficient to allow     |
| 3635 |                      | free movement of air and communication of negative pressures to      |
| 3636 |                      | all points below the slab;                                           |
| 3637 |                      |                                                                      |
| 3638 | <u>B)</u>            | Sealing of all construction joints, open cracks, and penetrations    |
| 3639 |                      | through the slab (e.g., for utilities and riser pipes) with a low    |
| 3640 |                      | volatile caulk; and                                                  |
| 3641 |                      |                                                                      |
| 3642 | <u>C)</u>            | At least one 3 inch diameter riser pipe venting to the atmosphere    |
| 3643 |                      | above the roof line (at least 10 feet from any doors or windows) for |
| 3644 |                      | each 5000 square feet of membrane area, with the capability of       |
| 3645 |                      | converting passively vented floor systems to actively vented or      |
| 3646 |                      | SSD systems meeting the performance requirements of subsection       |
| 3647 |                      | (c)(1).                                                              |
| 3648 |                      |                                                                      |
| 3649 | (Source: Added at 3) | 6 Ill. Reg, effective)                                               |

t r

### 3650 Section 742. APPENDIX A General

3651

5 4

3652Section 742.TABLE ASoil Saturation Limits (Csat) for Chemicals Whose Melting Point is3653Less than 30°C

|                 |                                                       | · · · · · · · · · · · · · · · · · · ·                                                                               |                                                                                                                               |
|-----------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| <u>CAS No.</u>  | <u>Chemical Name</u>                                  | <u>For the Outdoor</u><br><u>Inhalation</u><br><u>Exposure Route<sup>a</sup><br/><u>C<sub>sat</sub> (mg/kg)</u></u> | For the Soil<br>Component of<br>the<br>Groundwater<br>Ingestion<br>Exposure<br>Route <sup>b</sup> C <sub>sat</sub><br>(mg/kg) |
| <u>67-64-1</u>  | Acetone                                               | <u>1.00E+05</u>                                                                                                     | <u>2.00E+05</u>                                                                                                               |
| <u>71-43-2</u>  | Benzene                                               | <u>8.00E+02</u>                                                                                                     | <u>5.80E+02</u>                                                                                                               |
| <u>111-44-4</u> | Bis(2-chloroethyl)ether                               | <u>3.00E+03</u>                                                                                                     | <u>3.90E+03</u>                                                                                                               |
| <u>117-81-7</u> | Bis(2-ethylhexyl)phthalate                            | <u>2.00E+02</u>                                                                                                     | <u>6.80E+01</u>                                                                                                               |
| <u>75-27-4</u>  | Bromodichloromethane<br>(Dichlorobromomethane)        | <u>2.80E+03</u>                                                                                                     | <u>2.00E+03</u>                                                                                                               |
| <u>75-25-2</u>  | Bromoform                                             | <u>2.00E+03</u>                                                                                                     | <u>1.20E+03</u>                                                                                                               |
| <u>71-36-3</u>  | Butanol                                               | <u>1.00E+04</u>                                                                                                     | <u>1.60E+04</u>                                                                                                               |
| <u>78-93-3</u>  | 2-Butanone (MEK)                                      | <u>2.50E+04</u>                                                                                                     | <u>4.50E+04</u>                                                                                                               |
| <u>85-68-7</u>  | Butyl benzyl phthalate                                | <u>1.00E+03</u>                                                                                                     | <u>3.40E+02</u>                                                                                                               |
| <u>75-15-0</u>  | Carbon disulfide                                      | <u>8.50E+02</u>                                                                                                     | <u>5.20E+02</u>                                                                                                               |
| <u>56-23-5</u>  | Carbon tetrachloride                                  | <u>1.20E+03</u>                                                                                                     | <u>5.60E+02</u>                                                                                                               |
| <u>108-90-7</u> | Chlorobenzene (Monochlorobenzene)                     | <u>6.20E+02</u>                                                                                                     | <u>2.90E+02</u>                                                                                                               |
| <u>124-48-1</u> | <u>Chlorodibromomethane</u><br>(Dibromochloromethane) | <u>1.40E+03</u>                                                                                                     | <u>8.90E+02</u>                                                                                                               |
| <u>67-66-3</u>  | <u>Chloroform</u>                                     | <u>3.40E+03</u>                                                                                                     | <u>2.50E+03</u>                                                                                                               |
| <u>95-57-8</u>  | 2-Chlorophenol <sup>c</sup> (ionizable organic)       | <u>1.00E+04</u>                                                                                                     | <u>7.10E+03</u>                                                                                                               |
| 75-99-0         | Dalapon                                               | <u>1.20E+05</u>                                                                                                     | <u>1.90E+05</u>                                                                                                               |
| <u>96-12-8</u>  | 1,2-Dibromo-3-chloropropane                           | <u>6.90E+02</u>                                                                                                     | 4.30E+02                                                                                                                      |

| CAS No.          | <u>Chemical Name</u>                                                                     | For the Outdoor<br>Inhalation<br>Exposure Route <sup>a</sup><br>C <sub>sat</sub> (mg/kg) | For the Soil<br>Component of<br>the<br>Groundwater<br>Ingestion<br>Exposure<br>Route <sup>b</sup> C <sub>sat</sub><br>(mg/kg) |
|------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 106-93-4         | 1,2-Dibromoethane (Ethylene dibromide)                                                   | <u>1.60E+03</u>                                                                          | <u>1.20E+03</u>                                                                                                               |
| <u>84-74-2</u>   | Di-n-butyl phthalate                                                                     | <u>2.60E+03</u>                                                                          | <u>8.80E+02</u>                                                                                                               |
| <u>95-50-1</u>   | 1,2-Dichlorobenzene (o-Dichlorobenzene)                                                  | <u>5.60E+02</u>                                                                          | <u>2.10E+02</u>                                                                                                               |
| <u>75-71-8</u>   | Dichlorodifluoromethane                                                                  | <u>8.70E+02</u>                                                                          | <u>4.30E+02</u>                                                                                                               |
| <u>75-34-3</u>   | 1,1-Dichloroethane                                                                       | <u>1.70E+03</u>                                                                          | <u>1.40E+03</u>                                                                                                               |
| <u>107-06-2</u>  | 1,2-Dichloroethane (Ethylene dichloride)                                                 | <u>1.90E+03</u>                                                                          | <u>2.10E+03</u>                                                                                                               |
| <u>75-35-4</u>   | 1,1-Dichloroethylene                                                                     | <u>1.40E+03</u>                                                                          | <u>9.10E+02</u>                                                                                                               |
| <u>156-59-2</u>  | cis-1,2-Dichloroethylene                                                                 | <u>1.30E+03</u>                                                                          | <u>1.00E+03</u>                                                                                                               |
| <u>156-60-5</u>  | trans-1,2-Dichloroethylene                                                               | <u>3.00E+03</u>                                                                          | <u>2.10E+03</u>                                                                                                               |
| <u>78-87-5</u>   | 1,2-Dichloropropane                                                                      | <u>1.20E+03</u>                                                                          | <u>8.70E+02</u>                                                                                                               |
| <u>542-75-6</u>  | <u>1,3-Dichloropropene (1,3-</u><br><u>Dichloropropylene, <i>cis</i> + <i>trans</i>)</u> | <u>1.00E+03</u>                                                                          | <u>8.50E+02</u>                                                                                                               |
| <u>84-66-2</u>   | Diethyl phthalate                                                                        | <u>2.20E+03</u>                                                                          | <u>9.20E+02</u>                                                                                                               |
| <u>105-67-9</u>  | 2,4-Dimethylphenol                                                                       | <u>1.00E+04</u>                                                                          | <u>4.70E+03</u>                                                                                                               |
| <u>117-84-0</u>  | Di-n-octyl phthalate                                                                     | <u>1.60E+01</u>                                                                          | <u>5.20E+00</u>                                                                                                               |
| <u>123-91-1</u>  | <u>p-Dioxane</u>                                                                         | <u>1.00E+05</u>                                                                          | <u>2.00E+05</u>                                                                                                               |
| <u>100-41-4</u>  | Ethylbenzene                                                                             | <u>3.50E+02</u>                                                                          | <u>1.50E+02</u>                                                                                                               |
| <u>77-47-4</u>   | <u>Hexachlorocyclopentadiene</u>                                                         | <u>1.30E+02</u>                                                                          | <u>4.40E+01</u>                                                                                                               |
| <u>78-59-1</u>   | Isophorone                                                                               | <u>3.00E+03</u>                                                                          | <u>3.00E+03</u>                                                                                                               |
| <u>98-82-8</u>   | Isopropylbenzene (Cumene)                                                                | <u>9.40E+02</u>                                                                          | <u>4.00E+02</u>                                                                                                               |
| <u>7439-97-6</u> | Mercury (elemental)                                                                      | <u>3.10E+00</u>                                                                          | <u>N/A</u>                                                                                                                    |

\*

r r R

| CAS No.          | <u>Chemical Name</u>                    | For the Outdoor<br>Inhalation<br>Exposure Route <sup>a</sup><br>C <sub>sat</sub> (mg/kg) | For the Soil<br>Component of<br>the<br>Groundwater<br>Ingestion<br>Exposure<br>Route <sup>b</sup> C <sub>sat</sub><br>(mg/kg) |
|------------------|-----------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| <u>74-83-9</u>   | Methyl bromide (Bromomethane)           | <u>3.10E+03</u>                                                                          | <u>3.60E+03</u>                                                                                                               |
| <u>1634-04-4</u> | Methyl tertiary-butyl ether             | <u>8.40E+03</u>                                                                          | <u>1.10E+04</u>                                                                                                               |
| <u>75-09-2</u>   | Methylene chloride (Dichloromethane)    | 2.50E+03                                                                                 | <u>3.00E+03</u>                                                                                                               |
| <u>98-95-3</u>   | Nitrobenzene                            | <u>7.10E+02</u>                                                                          | <u>5.90E+02</u>                                                                                                               |
| <u>621-64-7</u>  | n-Nitrosodi-n-propylamine               | <u>1.90E+03</u>                                                                          | <u>2.30E+03</u>                                                                                                               |
| 100-42-5         | Styrene                                 | <u>6.30E+02</u>                                                                          | <u>2.60E+02</u>                                                                                                               |
| <u>127-18-4</u>  | Tetrachloroethylene (Perchloroethylene) | <u>8.00E+02</u>                                                                          | <u>3.10E+02</u>                                                                                                               |
| <u>108-88-3</u>  | Toluene                                 | <u>5.80E+02</u>                                                                          | <u>2.90E+02</u>                                                                                                               |
| <u>120-82-1</u>  | 1,2,4-Trichlorobenzene                  | <u>3.40E+02</u>                                                                          | <u>1.20E+02</u>                                                                                                               |
| <u>71-55-6</u>   | 1,1,1-Trichloroethane                   | <u>1.30E+03</u>                                                                          | <u>6.70E+02</u>                                                                                                               |
| <u>79-00-5</u>   | <u>1,1,2-Trichloroethane</u>            | <u>1.80E+03</u>                                                                          | <u>1.30E+03</u>                                                                                                               |
| <u>79-01-6</u>   | Trichloroethylene                       | <u>1.20E+03</u>                                                                          | <u>6.50E+02</u>                                                                                                               |
| <u>75-69-4</u>   | Trichlorofluoromethane                  | <u>1.80E+03</u>                                                                          | <u>8.90E+02</u>                                                                                                               |
| <u>108-05-4</u>  | Vinyl acetate                           | <u>2.60E+03</u>                                                                          | <u>4.20E+03</u>                                                                                                               |
| <u>75-01-4</u>   | Vinyl chloride                          | <u>2.60E+03</u>                                                                          | <u>2.90E+03</u>                                                                                                               |
| <u>108-38-3</u>  | <u>m-Xylene</u>                         | <u>4.10E+02</u>                                                                          | <u>1.60E+02</u>                                                                                                               |
| <u>95-47-6</u>   | <u>o-Xylene</u>                         | <u>3.70E+02</u>                                                                          | <u>1.50E+02</u>                                                                                                               |
| <u>106-42-3</u>  | <u>p-Xylene</u>                         | <u>3.30E+02</u>                                                                          | <u>1.40E+02</u>                                                                                                               |
| <u>1330-20-7</u> | Xylenes (total)                         | <u>2.80E+02</u>                                                                          | <u>1.10E+02</u>                                                                                                               |

3655 3656 ٩

je v N

<sup>a</sup> Soil Saturation Limits calculated using an foc of 0.006 g/g and a system temperature of 25°C.

- <sup>b</sup> Soil Saturation Limits calculated using an foc of 0.002 g/g and a system temperature of 25°C. 3658
- 3659

3660

<sup>c</sup> <u>C<sub>sat</sub> for pH of 6.8.</u> If soil pH is other than 6.8, a site-specific  $C_{sat}$  should be calculated using equations S19 and S29 and the pH-specific  $K_{oc}$  values in Appendix C, Table I.

3661 3662

| CAS-No.             | Chemical Name                                                           | C <sub>sat</sub> (mg/kg) |
|---------------------|-------------------------------------------------------------------------|--------------------------|
| 67-64-1             | Acetone                                                                 | 100,000                  |
| 71-43-2             | Benzene                                                                 | 870                      |
| 111-44-4            | Bis(2-chloroethyl)ether                                                 | 3,300                    |
| <del>117-81-7</del> | Bis(2-ethylhexyl)phthalate                                              | 31,000                   |
| 75-27-4             | Bromodichloromethane (Dichlorobromomethane)                             | 3,000                    |
| 75-25-2             | Bromoform                                                               | 1,900                    |
| 71-36-3             | Butanol                                                                 | 10,000                   |
| <del>85-68-7</del>  | Butyl benzyl phthalate                                                  | 930                      |
| 75-15-0             | Carbon disulfide                                                        | 720                      |
| <del>56-23-5</del>  | Carbon tetrachloride                                                    | 1,100                    |
| 108-90-7            | Chlorobenzene (Monochlorobenzene)                                       | 680                      |
| 124-48-1            | Chlorodibromomethane (Dibromochloromethane)                             | 1,300                    |
| 67-66-3             | Chloroform                                                              | 2,900                    |
| <del>96-12-8</del>  | 1,2-Dibromo-3-chloropropane                                             | 1,400                    |
| 106-93-4            | 1,2-Dibromoethane (Ethylene dibromide)                                  | 2,800                    |
| 84-74-2             | Di- <i>n</i> -butyl phthalate                                           | 2,300                    |
| 95-50-1             | 1,2-Dichlorobenzene (o-Dichlorobenzene)                                 | 560                      |
| 75-34-3             | 1,1-Dichloroethane                                                      | 1,700                    |
| 107-06-2            | 1,2-Dichloroethane (Ethylene dichloride)                                | 1,800                    |
| 75-35-4             | 1,1-Dichloroethylene                                                    | 1,500                    |
| 156-59-2            | cis-1,2-Dichloroethylene                                                | 1,200                    |
| 156-60-5            | trans-1,2-Dichloroethylene                                              | 3,100                    |
| 78-87-5             | 1,2-Dichloropropane                                                     | 1,100                    |
| 542-75-6            | 1,3-Dichloropropene (1,3-Dichloropropylene, <i>cis</i> + <i>trans</i> ) | 1,400                    |
| <del>84-66-2</del>  | Diethyl phthalate                                                       | 2,000                    |
| <del>117-84-0</del> | <del>Di-<i>n</i>-octyl phthalate</del>                                  | 10,000                   |
| 100-41-4            | Ethylbenzene                                                            | 400                      |
| 77-47-4             | Hexachlorocyclopentadiene                                               | 2,200                    |
| 78-59-1             | Isophorone                                                              | 4,600                    |
| 74-83-9             | Methyl bromide (Bromomethane)                                           | 3,200                    |
| 1634-04-4           | Methyl tertiary-butyl ether                                             | 8,800                    |
| 75-09-2             | Methylene chloride (Dichloromethane)                                    | 2,400                    |
| <del>98-95-3</del>  | Nitrobenzene                                                            | 1,000                    |
| 100-42-5            | Styrene                                                                 | 1,500                    |
| 127-18-4            | Tetrachloroethylene (Perchloroethylene)                                 | 240                      |
| <del>108-88-3</del> | Toluene                                                                 | 650                      |

£ 1

| <del>120-82-1</del>  | 1,2,4-Trichlorobenzene     | 3,200  |
|----------------------|----------------------------|--------|
| <del>71-55-6</del>   | 1,1,1-Trichloroethane      | 1,200  |
| <del>79-00-5</del>   | 1,1,2-Trichloroethane      | 1,800  |
| <del>79-01-6</del>   | Trichloroethylene          | 1,300  |
| <del>108-05-4</del>  | Vinyl acetate              | 2,700  |
| 75-01-4              | Vinyl chloride             | 1,200  |
| <del>108-38-3</del>  | m-Xylene                   | 420    |
| <del>95-47-6</del>   | o-Xylene                   | 410    |
| 100-42-3             | <del>p-Xylene</del>        | 460    |
| <del>1330-20-7</del> | <del>Xylenes (total)</del> | 320    |
|                      | Ionizable Organics         |        |
| <del>92-57-8</del>   | 2-Chlorophenol             | 53,000 |
|                      |                            |        |

3663

3664

с 1 ъ

(Source: Amended at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

| 3665         | Section 742.APPENDIX A General                               |
|--------------|--------------------------------------------------------------|
| 3666         |                                                              |
| 3667         | Section 742.TABLE E Similar-Acting Noncarcinogenic Chemicals |
| 3668         |                                                              |
| 3669         | Adrenal Gland                                                |
| 3670         | Isopropylbenzene                                             |
| 3671         |                                                              |
| 3672         | Cholinesterase Inhibition                                    |
| 3673         | Aldicarb                                                     |
| 3674         | <u>Carbofuran</u>                                            |
| 3675         |                                                              |
| 3676         | <u>Circulatory System</u>                                    |
| 3677         | Alachlor                                                     |
| 3678         | Antimony (ingestion only)                                    |
| 3679         | Benzene                                                      |
| 3680         | Cobalt (ingestion only)                                      |
| 3681         | <u>2,4-D</u>                                                 |
| 3682         | cis-1,2-Dichloroethylene (ingestion only)                    |
| 3683         | 2,4-Dimethylphenol                                           |
| 3684         | 2,4-Dinitrotoluene                                           |
| 3685         | 2,6-Dinitrotoluene                                           |
| 3686         | Ensosulfan                                                   |
| 3687         | Fluoranthene                                                 |
| 3688         | Fluorene                                                     |
| 3689         | Methylene Chloride (inhalation only)                         |
| 3690         | Nickel (Res. & I/C only) (inhalation only)                   |
| 3691         | Nitrate as N                                                 |
| 3692         | <u>Nitrobenzene (ingestion only)</u>                         |
| 3693         | Selenium                                                     |
| 3694         | Simazine                                                     |
| 3695         | Styrene (ingestion only)                                     |
| 3696         | <u>1,3,5-1rinitrobenzene</u>                                 |
| 3697         | Zinc                                                         |
| 3698         |                                                              |
| 3699         | Decreased Body Weight Gain                                   |
| 3700         | Atrazine<br>Dis (2 - 11                                      |
| 3701         | Bis(2-chloroethyl)ether                                      |
| 3702         | <u>Uyanide</u>                                               |
| 3/03<br>2704 | <u>1,2-Dichlorobenzene (innalation only)</u>                 |
| 3704<br>2705 | Dieutyi phinalate (ingestion only)                           |
| 3703         | <u>Elisosullan</u>                                           |
| 3700<br>2707 | <u>Z-ivieuryIpnenoi (o-cresoi)</u>                           |
| 3/0/         | Naphulaiene (ingestion only)                                 |

Р. 2

| 3708 | Nickel (ingestion only)                      |
|------|----------------------------------------------|
| 3709 | n-Nitrosodiphenylamine                       |
| 3710 | Phenol (ingestion only)                      |
| 3711 | Simazine                                     |
| 3712 | Tetrachloroethylene (ingestion only)         |
| 3713 | 1,1,1-Trichloroethane (ingestion only)       |
| 3714 | Vinyl acetate (ingestion only)               |
| 3715 | Xylenes (Res. & I/C only) (ingestion only)   |
| 3716 |                                              |
| 3717 | Endocrine System                             |
| 3718 | Cyanide                                      |
| 3719 | 1,2-Dibromoethane (ingestion only)           |
| 3720 | Di-n-octyl phthalate (ingestion only)        |
| 3721 | Nitrobenzene                                 |
| 3722 | 1,2,4-Trichlorobenzene (ingestion only)      |
| 3723 |                                              |
| 3724 | Eye                                          |
| 3725 | 2,4-Dinitrophenol                            |
| 3726 | n-Nitrosodiphenylamine                       |
| 3727 | Polychlorinated biphenyls (PCBs)             |
| 3728 | Trichloroethylene                            |
| 3729 |                                              |
| 3730 | Gastrointestinal System                      |
| 3731 | Beryllium (ingestion only)                   |
| 3732 | Copper                                       |
| 3733 | 1,3-Dichloropropene (cis + trans)            |
| 3734 | Endothall                                    |
| 3735 | Fluoride                                     |
| 3736 | Hexachlorocyclopentadiene (ingestion only)   |
| 3737 | Iron                                         |
| 3738 | Methyl bromide (ingestion only)              |
| 3739 | Methyl tertiary-butyl ether (ingestion only) |
| 3740 |                                              |
| 3741 | Immune System                                |
| 3742 | 4-Chloroaniline                              |
| 3743 | 2,4-Dichlorophenol                           |
| 3744 | Mercury (ingestion only)                     |
| 3745 | Polychlorinated biphenyls (PCBs)             |
| 3746 |                                              |
| 3747 | <u>Kidney</u>                                |
| 3748 | Acetone (ingestion only)                     |

- Aldrin (CW only) Barium 3749
- 3750

•

- 3751 Bromodichloromethane (ingestion only)
- 3752 <u>Cadmium</u>
- 3753 <u>2,4-D</u>
- 3754 Dalapon
- 3755 <u>1,1-Dichloroethane</u>
- 3756 <u>1,2-Dichloroethane (CW only) (ingestion only)</u>
- 3757 <u>Ensosulfan</u>
- 3758 Ethylbenzene (ingestion only)
- 3759 <u>Fluoranthene</u>
- 3760 gamma-HCH (gamma-BHC)
- 3761 <u>Hexachloroethane (ingestion only)</u>
- 3762 <u>Isopropylbenzene</u>
- 3763 <u>Mecoprop (MCPP)</u>
- 3764 <u>Methyl tertiary-butyl ether (inhalation only)</u>
- 3765 Pentachlorophenol
- 3766 <u>Pyrene</u>
- 3767 <u>Toluene (ingestion only)</u>
- 3768 <u>2,4,5-Trichlorophenol</u>
- 3769 <u>Vinyl acetate (ingestion only)</u>
- 3771 Liver

- 3772 Acenaphthene
- 3773 Aldrin (Res. & I/C only)
- 3774 <u>Bis(2-ethylhexyl)phthalate (Res. & I/C only) (ingestion only)</u>
- 3775 Bromoform
- 3776 Butyl Benzyl Phthalate (ingestion only)
- 3777 <u>Carbon Tetrachloride</u>
- 3778 <u>Chlordane</u>
- 3779 <u>Chlorobenzene (ingestion only)</u>
- 3780 <u>Chlorodibromomethane (ingestion only)</u>
- 3781 <u>Chloroform</u>
- 3782 <u>2,4-D</u>
- 3783 <u>DDT</u>
- 3784 <u>1,2-Dibromoethane (ingestion only)</u>
- 3785 <u>1,2-Dichlorobenzene (CW only) (ingestion only)</u>
- 3786 <u>1,4-Dichlorobenzene</u>
- 3787 Dichlorodifluoromethane
- 3788 <u>1,2-Dichloroethane (inhalation only)</u>
- 3789 <u>1,1-Dichloroethylene</u>
- 3790 <u>trans-1,2-Dichloroethylene</u>
- 3791 <u>1,2-Dichloropropane (ingestion only)</u>
- 3792 Dieldrin (Res. & I/C only)
- 3793 <u>2,4-Dinitrotoluene</u>

3794 2,6-Dinitrotoluene 3795 Di-n-octyl phthalate (ingestion only) 3796 p-Dioxane 3797 Endrin 3798 Ethylbenzene (ingestion only) 3799 Fluoranthene 3800 Heptachlor 3801 Heptachlor epoxide 3802 Hexachlorobenzene 3803 alpha-HCH (alpha-BHC) 3804 gamma-HCH (gamma-BHC) 3805 High Melting Explosive, Octogen (HMX) Isophorone (inhalation only) 3806 3807 Methyl tertiary-butyl ether 3808 Methylene Chloride (ingestion only) 3809 Pentachlorophenol 3810 Phenol (inhalation only) 3811 Picloram 3812 Styrene (ingestion only) 3813 Tetrachloroethylene (ingestion only) 3814 Toxaphene (CW only) 3815 2,4,5-TP (Silvex) 3816 1,2,4-Trichlorobenzene (inhalation only) 3817 1,1,1-Trichloroethane (inhalation only) 3818 1,1,2-Trichloroethane (ingestion only) 3819 2,4,5-Trichlorophenol 2,4,6-Trinitrotoluene (TNT) 3820 3821 Vinyl Chloride 3822 3823 Mortality 3824 Di-n-butyl phthalate (ingestion only) 3825 Xylenes (Res. & I/C only) (ingestion only) 3826 3827 **Nervous System** 3828 Butanol (ingestion only) Carbon disulfide (inhalation only) 3829 Cyanide 3830 3831 Dieldrin 3832 2,4-Dimethylphenol 3833 2,4-Dinitrotoluene 3834 2,6-Dinitrotoluene 3835 Endrin 3836 Hexachloroethane (inhalation only) (CW only)

P E

| 3837 | Manganese                                             |
|------|-------------------------------------------------------|
| 3838 | Mercury (inhalation only)                             |
| 3839 | 2-Methylphenol (o-cresol)                             |
| 3840 | Phenol (inhalation only)                              |
| 3841 | Selenium                                              |
| 3842 | Styrene (inhalation only)                             |
| 3843 | <u>Tetrachloroethylene (inhalation only)</u>          |
| 3844 | <u>Toluene (inhalation only)</u>                      |
| 3845 | Trichloroethylene                                     |
| 3846 | Xylenes (CW only) (ingestion only)                    |
| 3847 | <u>Xylenes (inhalation only)</u>                      |
| 3848 |                                                       |
| 3849 | Reproductive System                                   |
| 3850 | Arsenic (inhalation only)                             |
| 3851 | Bis(2-ethylhexyl)phthalate (CW only) (ingestion only) |
| 3852 | Boron                                                 |
| 3853 | 2-Butanone                                            |
| 3854 | <u>Carbofuran</u>                                     |
| 3855 | Carbon disulfide (ingestion only)                     |
| 3856 | 2-Chlorophenol                                        |
| 3857 | 1,2-Dibromo-3-chloropropane                           |
| 3858 | 1,2-Dibromoethane (ingestion only)                    |
| 3859 | Dicamba                                               |
| 3860 | Dinoseb                                               |
| 3861 | Ethylbenzene (inhalation only)                        |
| 3862 | Isophorone (inhalation only)                          |
| 3863 | Methoxychlor                                          |
| 3864 | Royal Demolition Explosive, Cyclonite (RDX)           |
| 3865 | 2,4,6-Trichlorophenol                                 |
| 3866 |                                                       |
| 3867 | <u>Respiratory System</u>                             |
| 3868 | Antimony (inhalation only)                            |
| 3869 | Benzoic Acid (inhalation only)                        |
| 3870 | Beryllium (inhalation only)                           |
| 3871 | Cadmium (inhalation only)                             |
| 3872 | Chromium (hex) (inhalation only)                      |
| 3873 | <u>Cobalt (inhalation only)</u>                       |
| 3874 | 1,2-Dibromoethane (inhalation only)                   |
| 3875 | trans-1,2-Dichloroethylene (inhalation only)          |
| 3876 | 1,2-Dichloropropane (inhalation only)                 |
| 3877 | 1,3-Dichloropropene (cis + trans) (inhalation only)   |
| 3878 | Hexachlorocyclopentadiene (inhalation only)           |
| 3879 | Methyl bromide (inhalation only)                      |
|      |                                                       |

r. F

- 3880 Naphthalene (inhalation only)
- 3881 <u>Nickel (inhalation only)</u>
- 3882 <u>Nitrobenzene (inhalation only)</u>
- 3883 <u>Vinyl acetate (inhalation only)</u>

# 3884

3885 <u>Skin</u>

r r

- 3886 <u>Arsenic (ingestion only)</u>
- 3887 Polychlorinated biphenyls (PCBs)
- 3888 Selenium
- 3889 <u>Silver</u>
- 3890

### 3891 <u>Spleen</u>

- 3892 <u>1,3-Dinotrobenzene</u>
- 3893 <u>1,3,5-Trinitrobenzene</u>

# 3894

- 3895 <u>Notes:</u>3896 Res. = Residential
- $\frac{3896}{3897} \quad \frac{\text{Res.} = \text{Residential receptor}}{I/C = \text{Industrial Commercial rece}}$
- $\frac{3897}{3898} \quad \frac{I/C = \text{Industrial Commercial receptor}}{CW = \text{Construction Worker receptor}}$
- 3899

### Adrenal Gland

<u>Nitrobenzene</u>

1,2,4-Trichlorobenzene (Ingestion only)

#### 3900

**Kidney** Acetone (Ingestion only) Cadmium (Ingestion only) **Chlorobenzene** Dalapon 1,1-Dichloroethane Di-n-octyl-phthalate (Ingestion only) Endosulfan Ethylbenzene Fluoranthene Methyl-tertiary-butyl ether (Inhalation only) Nitrobenzene Pyrene Toluene (Ingestion only) 2,4,5-Trichlorophenol Vinyl acetate (Ingestion only)

3901

Liver Acenaphthene

Acetone (Ingestion only) Butylbenzyl phthalate (Ingestion only) Chlorobenzene (Ingestion only) <u>1,1-Dichloroethylene (Ingestion only)</u> Di-n-octyl phthalate (Ingestion only) Endrin Ethylbenzene Fluoranthene Methyl-tertiary-butyl-ether (Inhalation-only) Nitrobenzene Picloram Styrene (Ingestion only) 2,4,5-TP (Silvex) Toluene (Ingestion only) 1,2,4-Trichlorobenzene (Inhalation only) 2,4,5-Trichlorophenol

#### 3902

4

1

<u>Central Nervous System</u> <u>Butanol (Ingestion only)</u> <u>Cyanide (amenable)</u> <u>2,4-Dimethylphenol</u> <u>Endrin</u> <u>Manganese</u> <u>2-Methylphenol</u> <u>Mercury (Inhalation only)</u> <u>Styrene (Inhalation only)</u> <u>Toluene (Inhalation only)</u> <u>Xylenes (Ingestion only)</u>

#### 3903

<u>Circulatory System</u> <u>Antimony</u> <u>Barium (Ingestion only)</u> <u>2,4-D</u> <u>cis-1,2-Dichloroethylene (Ingestion only)</u> <u>Nitrobenzene</u> <u>trans-1,2-Dichloroethylene (Ingestion only)</u> <u>2,4-Dimethylphenol</u> <u>Fluoranthene</u> <u>Fluorene</u> <u>Styrene (Ingestion only)</u> <u>Zine</u>

### 3904

Gastrointestinal System

Beryllium (Ingestion only) Endothall Hexachlorocyclopentadiene (Ingestion only) Methyl bromide (Ingestion only) Methyl tertiary-butyl ether (Ingestion only)

### 3905

، د

> Immune System 2,4-Dichlorophenol p-Chloroaniline Mercury (Ingestion only)

#### 3906

Reproductive SystemBarium (Inhalation only)Boron (Ingestion only)Carbon disulfide2-Chlorophenol (Ingestion only)1,2 Dibromo-3-Chloropropane (Inhalation only)DinosebEthylbenzene (Inhalation only)MethoxychlorPhenol

#### 3907

<u>Respiratory System</u> <u>1,2-Dichloropropane (Inhalation only)</u> <u>1,3-Dichloropropylene (Inhalation only)</u> <u>Hexachlorocyclopentadiene (Inhalation only)</u> <u>Methyl bromide (Inhalation only)</u> <u>Napthalene (Inhalation only)</u> <u>Toluene (Inhalation only)</u> <u>Vinyl acetate (Inhalation only)</u>

#### 3908

<u>Cholinesterase Inhibition</u> <u>Aldicarb</u> <u>Carbofuran</u>

#### 3909

<u>Decreased Body Weight Gains and Circulatory System Effects</u> <u>Atrazine</u> <u>Simazine</u>

#### 3910

3911 (Source: Amended at 36 Ill. Reg. \_\_\_\_, effective \_\_\_\_\_)

| 3912 | Section 742.APPENDIX A General                            |
|------|-----------------------------------------------------------|
| 3913 |                                                           |
| 3914 | Section 742.TABLE F Similar-Acting Carcinogenic Chemicals |
| 3915 |                                                           |
| 3916 | <u>Bladder</u>                                            |
| 3917 | <u>1,3-Dichloropropene (cis + trans) (ingestion only)</u> |
| 3918 | <u>n-Nitrosodiphenylamine</u>                             |
| 3919 |                                                           |
| 3920 | <u>Circulatory System</u>                                 |
| 3921 | Benzene                                                   |
| 3922 | <u>1.2-Dibromoethane</u>                                  |
| 3923 | <u>1.2-Dichloroethane</u>                                 |
| 3924 | Pentachlorophenol                                         |
| 3925 | 2.4.6-Trichlorophenol                                     |
| 3926 |                                                           |
| 3927 | <u>Gall Bladder</u>                                       |
| 3928 | <u>p-Dioxane (inhalation only)</u>                        |
| 3929 |                                                           |
| 3930 | Gastrointestinal System                                   |
| 3931 | Benzo(a)anthracene (ingestion only)                       |
| 3932 | Benzo(b)fluoranthene (ingestion only)                     |
| 3933 | Benzo(k)fluoranthene (ingestion only)                     |
| 3934 | Benzo(a)pyrene (ingestion only)                           |
| 3935 | Bromoform                                                 |
| 3936 | Chrysene (ingestion only)                                 |
| 3937 | Dibenzo(a,h)anthracene (ingestion only)                   |
| 3938 | 1,2-Dibromoethane (ingestion only)                        |
| 3939 | Indeno(1,2,3-cd)pyrene (ingestion only)                   |
| 3940 |                                                           |
| 3941 | Kidney                                                    |
| 3942 | Bromodichloromethane (ingestion only)                     |
| 3943 | <u>Chloroform (ingestion only)</u>                        |
| 3944 | <u>1,2-Dibromo-3-chloropropane (ingestion only)</u>       |
| 3945 | Nitrobenzene                                              |
| 3946 |                                                           |
| 3947 | Liver                                                     |
| 3948 | Aldrin                                                    |
| 3949 | Bis(2-chloroethyl)ether                                   |
| 3950 | Bis(2-ethylhexyl)phthalate                                |
| 3951 | Carbazole                                                 |
| 3952 | Carbon Tetrachloride                                      |
| 3953 | Chlordane                                                 |
| 3954 | <u>Chloroform</u>                                         |

t. F ; t.

3955 DDD 3956 DDE 3957 DDT 3958 1,2-Dichloropropane 3959 Dieldrin 2,4-Dinitrotoluene 3960 3961 2,6-Dinitrotoluene p-Dioxane 3962 3963 Heptachlor 3964 Heptachlor epoxide 3965 Hexachlorobenzene alpha-HCH (alpha-BHC) 3966 3967 gamma-HCH (gamma-BHC) 3968 Methylene Chloride 3969 Nitrobenzene 3970 n-Nitrosodiphenylamine (inhalation only) 3971 n-Nitrosodi-n-propylamine 3972 Pentachlorophenol 3973 Polychlorinated biphenyls (PCBs) 3974 Tetrachloroethylene 3975 Toxaphene Trichloroethylene 3976 3977 Vinyl Chloride (I/C & CW) 3978 Vinyl Chloride (Res.) 3979 3980 **Mammary Gland** 3981 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 3982 3983 2,6-Dinitrotoluene 3984 3985 **Respiratory System** 3986 Arsenic (inhalation only) 3987 Benzo(a)anthracene (inhalation only) 3988 Benzo(b)fluoranthene (inhalation only) 3989 Benzo(k)fluoranthene (inhalation only) Benzo(a)pyrene (inhalation only) 3990 3991 Beryllium 3992 Cadmium 3993 Chromium (hexavalent ion) 3994 Chrysene (inhalation only) 3995 Cobalt 3996 Dibenzo(a,h)anthracene (inhalation only) 3997 1,2-Dibromo-3-chloropropane (inhalation only)

r 4

- 3998 <u>1,2-Dibromoethane (inhalation only)</u>
- 3999 <u>1,3-Dichloropropene (*cis + trans*) (inhalation only)</u>
- 4000 <u>p-Dioxane (inhalation only)</u>
- 4001 <u>Trichloroethylene</u>

z

4002

#### 4003 <u>Notes:</u>

- 4004 <u>Res. = Residential receptor</u>
- 4005 <u>I/C = Industrial Commercial receptor</u>
- 4006 <u>CW = Construction Worker receptor</u>
- 4007

### <u>Kidney</u>

Bromodichloromethane (Ingestion only) Chloroform (Ingestion only) 1,2-Dibromo-3-chloropropane (Ingestion only) 2,4-Dinitrotoluene 2,6-Dinitrotoluene Hexachlorobenzene

Liver

Aldrin Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate (Ingestion only) Carbazole Carbon tetrachloride Chlordane Chloroform (Inhalation only) **DDD** DDE **ĐĐ**Ŧ 1,2-Dibromo-3-chloropropane (Ingestion only) 1,2-Dibromoethane (Ingestion only) 3.3'-Dichlorobenzidine 1,2-Dichloroethane 1,2-Dichloropropane (Ingestion only) 1,3-Dichloropropylene (Ingestion only) Dieldrin 2,4-Dinitrotoluene 2,6-Dinitrotoluene Heptachlor Heptachlor epoxide Hexachlorobenzene alpha-HCH gamma-HCH (Lindane)

Methylene chloride N-Nitrosodiphenylamine N-Nitrosodi-n-propylamine Pentachlorophenol Tetrachloroethylene Trichloroethylene 2,4,6-Trichlorophenol Toxaphene Vinyl-chloride

#### Circulatory System

.

Benzene 2,4,6-Trichlorophenol

#### Gastrointestinal System

Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-c,d)pyrene Bromodichloromethane (Ingestion only) Bromoform 1,2-Dibromo-3-chloropropane (Ingestion only) 1,2-Dibromoethane (Ingestion only) 1,3-Dichloropropylene (Ingestion only)

#### Lung

Arsenic (Inhalation only) Beryllium (Inhalation only) Cadmium (Inhalation only) Chromium, hexavalent (Inhalation only) 1,3-Dichloropropylene (Inhalation only) Methylene chloride (Inhalation only) N-Nitrosodi-n-propylamine Nickel (Inhalation only) Vinyl chloride

#### Nasal Cavity

1,2-Dibromo-3-chloropropane (Inhalation only) 1,2-Dibromoethane (Inhalation only) N-Nitrosodi-n-propylamine
#### <u>Bladder</u>

~

1 4

> 3,30-Dichlorobenzidine 1,3-Dichloropropylene (Ingestion only) N-Nitrosodiphenylamine

4008 4009

(Source: Amended at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

# 4010 <u>Section 742.APPENDIX A General</u>4011

### 4012 Section 742.TABLE J List of TACO Volatile Chemicals for the Indoor Inhalation

4013 Exposure Route

,

5 D 6

| CAS No.         | Chemical                                |
|-----------------|-----------------------------------------|
| 67-64-1         | Acetone                                 |
| 71-43-2         | Benzene                                 |
| 111-44-4        | Bis(2-chloroethyl)ether                 |
| 75-27-4         | Bromodichloromethane                    |
| 75-25-2         | Bromoform                               |
| 71-36-3         | Butanol                                 |
| <u>78-93-3</u>  | 2-Butanone (MEK)                        |
| 75-15-0         | Carbon disulfide                        |
| 56-23-5         | Carbon tetrachloride                    |
| 108-90-7        | Chlorobenzene                           |
| 124-48-1        | Chlorodibromomethane                    |
| <u>67-66-3</u>  | Chloroform                              |
| <u>95-57-8</u>  | 2-Chlorophenol                          |
| <u>75-99-0</u>  | Dalapon                                 |
| <u>96-12-8</u>  | 1,2-dibromo-3-chloropropane             |
| 106-93-4        | 1,2-Dibromoethane                       |
| <u>95-50-1</u>  | 1.2-Dichlorobenzene                     |
| 106-46-7        | 1,4-Dichlorobenzene                     |
| <u>75-71-8</u>  | Dichlorodifluoromethane                 |
| <u>75-34-3</u>  | 1,1-Dichloroethane                      |
| 107-06-2        | 1,2-Dichloroethane                      |
| 75-35-4         | 1,1-Dichloroethylene                    |
| <u>156-59-2</u> | cis-1,2-Dichloroethylene                |
| <u>156-60-5</u> | Trans-1,2-Dichloroethylene              |
| <u>78-87-5</u>  | 1,2-Dichloropropane                     |
| <u>542-75-6</u> | 1,3-Dichloropropylene ( $cis + trans$ ) |
| <u>123-91-1</u> | p-Dioxane                               |
| <u>100-41-4</u> | Ethylbenzene                            |
| <u>76-44-8</u>  | Heptachlor                              |
| <u>118-74-1</u> | Hexachlorobenzene                       |
| <u>77-47-4</u>  | Hexachlorocyclopentadiene               |
| 67-72-1         | Hexachloroethane                        |
| 78-59-1         | Isophorone                              |
| 98-82-8         | Isopropylbenzene (Cumene)               |
| 7439-97-6       | Mercury                                 |
| 74-83-9         | Methyl bromide                          |

| CAS No.          | Chemical                         |
|------------------|----------------------------------|
| 1634-04-4        | Methyl tertiary-butyl ether      |
| <u>75-09-2</u>   | Methylene chloride               |
| <u>93-65-2</u>   | 2-Methylnaphthalene              |
| <u>95-48-7</u>   | 2-Methylphenol (o-cresol)        |
| <u>91-20-3</u>   | Naphthalene                      |
| <u>98-95-3</u>   | Nitrobenzene                     |
| <u>621-64-7</u>  | n-Nitrosodi-n-propylamine        |
| <u>108-95-2</u>  | Phenol                           |
| <u>1336-36-3</u> | Polychlorinated biphenyls (PCBs) |
| 100-42-5         | Styrene                          |
| 127-18-4         | Tetrachloroethylene              |
| <u>108-88-3</u>  | Toluene                          |
| <u>120-82-1</u>  | 1,2,4-Trichlorobenzene           |
| <u>71-55-6</u>   | 1,1,1-Trichloroethane            |
| <u>79-00-5</u>   | 1,1,2-Trichloroethane            |
| <u>79-01-6</u>   | Trichloroethylene                |
| <u>75-69-4</u>   | Trichlorofluoromethane           |
| <u>108-05-4</u>  | Vinyl acetate                    |
| <u>75-01-4</u>   | Vinyl chloride                   |
| <u>108-38-3</u>  | <u>m-Xylene</u>                  |
| <u>95-47-6</u>   | <u>o-Xylene</u>                  |
| <u>106-42-3</u>  | <u>p-Xylene</u>                  |
| 1330-20-7        | Xylenes (total)                  |

4015 4016 ¢

r 1 6

(Source: Added at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

## 4017 Section 742.APPENDIX A General

4018 4019 ъ

## Section 742.TABLE K Soil Vapor Saturation Limits (C<sub>v</sub><sup>sat</sup>) for Volatile Chemicals

| <u>CAS No.</u>  | Chemical Name                      | $\underline{C_v}^{\text{sat}} (\text{mg/m}^3)$ |
|-----------------|------------------------------------|------------------------------------------------|
| <u>67-64-1</u>  | Acetone                            | <u>7.50E+05</u>                                |
| <u>71-43-2</u>  | Benzene                            | 4.20E+05                                       |
| 111-44-4        | Bis(2-chloroethyl)ether            | <u>1.20E+04</u>                                |
| <u>75-27-4</u>  | Bromodichloromethane               | 4.50E+05                                       |
| <u>75-25-2</u>  | Bromoform                          | <u>7.80E+04</u>                                |
| <u>71-36-3</u>  | Butanol                            | 2.90E+04                                       |
| 78-93-3         | 2-Butanone (MEK)                   | <u>3.80E+05</u>                                |
| 75-15-0         | Carbon disulfide                   | <u>1.50E+06</u>                                |
| 56-23-5         | Carbon tetrachloride               | <u>1.00E+06</u>                                |
| 108-90-7        | Chlorobenzene                      | <u>7.40E+04</u>                                |
| 124-48-1        | Chlorodibromomethane               | <u>5.70E+04</u>                                |
| <u>67-66-3</u>  | Chloroform                         | <u>1.30E+06</u>                                |
| <u>95-57-8</u>  | 2-Chlorophenol (ionizable organic) | <u>1.70E+04</u>                                |
| <u>75-99-0</u>  | Dalapon                            | <u>1.50E+03</u>                                |
| <u>96-12-8</u>  | 1.2-Dibromo-3-chloropropane        | <u>7.80E+03</u>                                |
| 106-93-4        | 1.2-Dibromoethane                  | <u>1.40E+05</u>                                |
| <u>95-50-1</u>  | 1,2-Dichlorobenzene                | <u>1.10E+04</u>                                |
| 106-46-7        | 1,4-Dichlorobenzene                | <u>8.40E+03</u>                                |
| <u>75-71-8</u>  | Dichlorodifluoromethane            | <u>3.30E+07</u>                                |
| 75-34-3         | 1.1-Dichloroethane                 | <u>1.30E+06</u>                                |
| 107-06-2        | 1.2-Dichloroethane                 | <u>4.40E+05</u>                                |
| 75-35-4         | 1.1-Dichloroethylene               | <u>3.30E+06</u>                                |
| <u>156-59-2</u> | cis-1,2-Dichloroethylene           | <u>1.10E+06</u>                                |

| <u>CAS No.</u>   | Chemical Name                              | $\underline{C_v^{sat}} (mg/m^3)$ |
|------------------|--------------------------------------------|----------------------------------|
| <u>156-60-5</u>  | trans-1,2-Dichloroethylene                 | <u>1.80E+06</u>                  |
| <u>78-87-5</u>   | <u>1,2-Dichloropropane</u>                 | <u>3.20E+05</u>                  |
| <u>542-75-6</u>  | <u>1,3-Dichloropropylene (cis + trans)</u> | <u>2.10E+05</u>                  |
| <u>123-91-1</u>  | <u>p-Dioxane</u>                           | <u>1.90E+05</u>                  |
| 100-41-4         | Ethylbenzene                               | <u>5.90E+04</u>                  |
| <u>76-44-8</u>   | Heptachlor                                 | <u>8.30E+00</u>                  |
| <u>118-74-1</u>  | Hexachlorobenzene                          | <u>2.80E-01</u>                  |
| <u>77-47-4</u>   | Hexachlorocyclopentadiene                  | <u>9.10E+02</u>                  |
| <u>67-72-1</u>   | Hexachloroethane                           | <u>2.80E+03</u>                  |
| <u>78-59-1</u>   | Isophorone                                 | <u>3.40E+03</u>                  |
| <u>98-82-8</u>   | Isopropylbenzene (Cumene)                  | <u>3.00E+04</u>                  |
| <u>7439-97-6</u> | Mercury (elemental)                        | <u>2.20E+01</u>                  |
| <u>74-83-9</u>   | Methyl bromide                             | <u>8.60E+06</u>                  |
| <u>1634-04-4</u> | Methyl tertiary-butyl ether                | <u>1.20E+06</u>                  |
| <u>75-09-2</u>   | Methylene chloride                         | <u>2.00E+06</u>                  |
| <u>93-65-2</u>   | 2-Methylnaphthalene                        | <u>5.30E+02</u>                  |
| <u>1634-04-4</u> | 2-Methylphenol (o-cresol)                  | <u>1.80E+03</u>                  |
| <u>91-20-3</u>   | Naphthalene                                | <u>6.20E+02</u>                  |
| <u>98-95-3</u>   | Nitrobenzene                               | <u>1.70E+03</u>                  |
| <u>621-64-7</u>  | n-Nitrosodi-n-propylamine                  | <u>9.50E+02</u>                  |
| <u>108-95-2</u>  | Phenol                                     | <u>1.50E+03</u>                  |
| <u>1336-36-3</u> | Polychlorinated biphenyls (PCBs)           | <u>9.00E+00</u>                  |
| 100-42-5         | Styrene                                    | <u>3.40E+04</u>                  |
| <u>127-18-4</u>  | Tetrachloroethylene                        | <u>1.80E+05</u>                  |
| <u>108-88-3</u>  | Toluene                                    | <u>1.40E+05</u>                  |
| <u>120-82-1</u>  | 1,2,4-Trichlorobenzene                     | <u>4.30E+03</u>                  |

1 4. T

| <u>CAS No.</u> | Chemical Name          | $\underline{C_{v}}^{sat} (mg/m^3)$ |
|----------------|------------------------|------------------------------------|
| <u>71-55-6</u> | 1,1.1-Trichloroethane  | <u>8.70E+05</u>                    |
| <u>79-00-5</u> | 1,1.2-Trichloroethane  | <u>1.70E+05</u>                    |
| <u>79-01-6</u> | Trichloroethylene      | <u>5.30E+05</u>                    |
| <u>75-69-4</u> | Trichlorofluoromethane | <u>6.30E+06</u>                    |
| 108-05-4       | Vinyl acetate          | <u>4.30E+05</u>                    |
| <u>75-01-4</u> | Vinyl chloride         | <u>1.10E+07</u>                    |
| 108-38-3       | <u>m-Xylene</u>        | <u>5.20E+04</u>                    |
| <u>95-47-6</u> | <u>o-Xylene</u>        | <u>4.10E+04</u>                    |
| 106-42-3       | <u>p-Xylene</u>        | <u>5.50E+04</u>                    |
| 1330-20-7      | <u>Xylenes (total)</u> | <u>4.90E+04</u>                    |

4021 4022

e . . .

(Source: Added at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

#### 4023 Section 742. APPENDIX B Tier 1 Illustrations and Tables

4024 4025

1

#### Section 742.TABLE G Tier 1 Soil Gas Remediation Objectives for theOutdoor Inhalation Exposure Route<sup>a</sup> 4026

| CAS No.         | Chemical Name                       | $\frac{\text{Residential}}{(\text{mg/m}^3)}$ | <u>Industrial/Commercial</u><br>(mg/m <sup>3</sup> ) | $\frac{Construction Worker}{(mg/m^3)}$ |
|-----------------|-------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------|
| <u>67-64-1</u>  | Acetone                             | <u>750,000<sup>e</sup></u>                   | <u>750,000<sup>e</sup></u>                           | <u>750,000<sup>e</sup></u>             |
| <u>71-43-2</u>  | Benzene                             | <u>420°</u>                                  | <u>800°</u>                                          | 1,100°                                 |
| 111-44-4        | Bis(2-chloroethyl)ether             | <u>1.3°</u>                                  | <u>2.4<sup>c</sup></u>                               | <u>3.4°</u>                            |
| <u>75-27-4</u>  | Bromodichloromethane                | 450,000 <sup>e</sup>                         | <u>450,000<sup>e</sup></u>                           | <u>450,000<sup>e</sup></u>             |
| <u>75-25-2</u>  | Bromoform                           | <u>1,800<sup>c</sup></u>                     | <u>3,500°</u>                                        | <u>4,900°</u>                          |
| <u>71-36-3</u>  | Butanol                             | <u>29,000<sup>e</sup></u>                    | <u>29,000<sup>e</sup></u>                            | <u>29,000<sup>e</sup></u>              |
| <u>78-93-3</u>  | 2-Butanone (MEK)                    | <u>380,000<sup>e</sup></u>                   | <u>380,000°</u>                                      | <u>15,000<sup>b</sup></u>              |
| <u>75-15-0</u>  | Carbon disulfide                    | <u>1,500,000<sup>e</sup></u>                 | 1,500,000 <sup>e</sup>                               | <u>48,000<sup>b</sup></u>              |
| <u>56-23-5</u>  | Carbon tetrachloride                | <u>290°</u>                                  | <u>550°</u>                                          | <u>770°</u>                            |
| <u>108-90-7</u> | Chlorobenzene                       | <u>36,000<sup>b</sup></u>                    | <u>57,000<sup>b</sup></u>                            | <u>3,700<sup>b</sup></u>               |
| <u>124-48-1</u> | Chlorodibromomethane                | <u>57,000<sup>e</sup></u>                    | <u>57,000<sup>e</sup></u>                            | <u>150<sup>b</sup></u>                 |
| <u>67-66-3</u>  | <u>Chloroform</u>                   | <u>110<sup>c</sup></u>                       | <u>200°</u>                                          | <u>290°</u>                            |
| <u>95-57-8</u>  | 2-Chlorophenol                      | <u>17,000<sup>e</sup></u>                    | <u>17,000<sup>e</sup></u>                            | <u>17,000<sup>e</sup></u>              |
| <u>75-99-0</u>  | Dalapon                             | <u>1,500<sup>e</sup></u>                     | <u>1,500<sup>e</sup></u>                             | <u>1,500<sup>e</sup></u>               |
| 96-12-8         | 1,2-Dibromo-3-chloropropane         | <u>0.14°</u>                                 | <u>0.27°</u>                                         | <u>0.38°</u>                           |
| <u>106-93-4</u> | 1,2-Dibromoethane                   | <u>2.9°</u>                                  | <u>5.6°</u>                                          | <u>7.9°</u>                            |
| <u>95-50-1</u>  | 1.2-Dichlorobenzene                 | <u>11,000<sup>e</sup></u>                    | <u>11,000<sup>e</sup></u>                            | <u>6,700<sup>b</sup></u>               |
| <u>106-46-7</u> | 1,4-Dichlorobenzene                 | <u>8,400<sup>e</sup></u>                     | <u>8,400<sup>e</sup></u>                             | <u>6,400<sup>b</sup></u>               |
| <u>75-71-8</u>  | Dichlorodifluoromethane             | <u>890,000<sup>b</sup></u>                   | <u>1,400,000<sup>b</sup></u>                         | <u>92,000<sup>b</sup></u>              |
| <u>75-34-3</u>  | 1,1-Dichloroethane                  | <u>870,000<sup>b</sup></u>                   | <u>1,300,000<sup>e</sup></u>                         | <u>90,000<sup>b</sup></u>              |
| <u>107-06-2</u> | 1,2-Dichloroethane                  | <u>67°</u>                                   | <u>130°</u>                                          | <u>180°</u>                            |
| <u>75-35-4</u>  | 1,1-Dichloroethylene                | <u>520,000<sup>b</sup></u>                   | <u>820,000<sup>b</sup></u>                           | <u>5,300<sup>b</sup></u>               |
| <u>156-59-2</u> | cis-1,2-Dichloroethylene            | <u>1,100,000<sup>e</sup></u>                 | <u>1,100,000<sup>e</sup></u>                         | <u>1,100,000<sup>e</sup></u>           |
| <u>156-60-5</u> | trans-1,2-Dichloroethylene          | <u>120,000<sup>b</sup></u>                   | <u>190,000<sup>b</sup></u>                           | <u>12,000<sup>b</sup></u>              |
| <u>78-87-5</u>  | 1.2-Dichloropropane                 | <u>240°</u>                                  | <u>470°</u>                                          | <u>110°</u>                            |
| <u>542-75-6</u> | 1.3-Dichloropropylene (cis + trans) | <u>1,900°</u>                                | <u>3,700°</u>                                        | <u>1,400°</u>                          |
| <u>123-91-1</u> | p-Dioxane                           | <u>16°</u>                                   | <u>30°</u>                                           | <u>42°</u>                             |
| 100-41-4        | Ethylbenzene                        | <u>59,000<sup>e</sup></u>                    | <u>59,000<sup>e</sup></u>                            | <u>8,500<sup>b</sup></u>               |
| 76-44-8         | <u>Heptachlor</u>                   | <u>0.40°</u>                                 | <u>0.76°</u>                                         | <u>1.1°</u>                            |
| <u>118-74-1</u> | Hexachlorobenzene                   | <u>0.26<sup>c</sup></u>                      | <u>0.28<sup>e</sup></u>                              | <u>0.28<sup>e</sup></u>                |

| CAS No.          | Chemical Name                    | $\frac{\text{Residential}}{(\text{mg/m}^3)}$ | Industrial/Commercial<br>(mg/m <sup>3</sup> ) | Construction Worker<br>(mg/m <sup>3</sup> ) |
|------------------|----------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------------|
| <u>77-47-4</u>   | Hexachlorocyclopentadiene        | <u>85<sup>b</sup></u>                        | <u>140<sup>b</sup></u>                        | <u>440<sup>b</sup></u>                      |
| <u>67-72-1</u>   | Hexachloroethane                 | <u>2,800<sup>e</sup></u>                     | <u>2,800<sup>e</sup></u>                      | <u>2,800<sup>e</sup></u>                    |
| <u>78-59-1</u>   | Isophorone                       | <u>3,400<sup>e</sup></u>                     | <u>3,400°</u>                                 | <u>1,500<sup>b</sup></u>                    |
| <u>98-82-8</u>   | Isopropylbenzene (Cumene)        | <u>30,000°</u>                               | <u>30,000°</u>                                | <u>30,000°</u>                              |
| 7439-97-6        | Mercury <sup>f</sup>             | <u>22</u> <sup>e</sup>                       | <u>22</u> <sup>e</sup>                        | <u>0.62<sup>b</sup></u>                     |
| <u>74-83-9</u>   | Methyl bromide                   | <u>12,000<sup>b</sup></u>                    | <u>19,000<sup>b</sup></u>                     | <u>2,400<sup>b</sup></u>                    |
| <u>1634-04-4</u> | Methyl tertiary-butyl ether      | <u>1,200,000<sup>e</sup></u>                 | <u>1,200,000<sup>e</sup></u>                  | <u>23,000<sup>b</sup></u>                   |
| <u>75-09-2</u>   | Methylene chloride               | <u>6,100<sup>c</sup></u>                     | <u>12,000°</u>                                | <u>5,100<sup>b</sup></u>                    |
| <u>91-57-6</u>   | 2-Methylnaphthalene              | <u>530</u> <sup>e</sup>                      | <u>530</u> <sup>e</sup>                       | <u>530<sup>e</sup></u>                      |
| <u>95-48-7</u>   | 2-Methylphenol (o-cresol)        | <u>1,800<sup>e</sup></u>                     | <u>1,800<sup>e</sup></u>                      | <u>410<sup>b</sup></u>                      |
| <u>91-20-3</u>   | Naphthalene                      | <u>560<sup>b</sup></u>                       | <u>620<sup>e</sup></u>                        | <u>5.8<sup>b</sup></u>                      |
| <u>98-95-3</u>   | Nitrobenzene                     | <u>6.5°</u>                                  | <u>12°</u>                                    | <u>10<sup>b</sup></u>                       |
| <u>621-64-7</u>  | n-Nitrosodi-n-propylamine        | <u>0.056<sup>c</sup></u>                     | <u>0.11<sup>c</sup></u>                       | <u>0.15°</u>                                |
| <u>108-95-2</u>  | Phenol                           | <u>1,500<sup>e</sup></u>                     | <u>1,500<sup>e</sup></u>                      | <u>79<sup>b</sup></u>                       |
| <u>1336-36-3</u> | Polychlorinated biphenyls (PCBs) | <u></u> d                                    | d                                             | d                                           |
| 100-42-5         | Styrene                          | <u>34,000<sup>e</sup></u>                    | <u>34,000<sup>e</sup></u>                     | <u>16,000<sup>b</sup></u>                   |
| 127-18-4         | Tetrachloroethylene              | <u>360°</u>                                  | <u>690°</u>                                   | <u>970<sup>c</sup></u>                      |
| 108-88-3         | Toluene                          | <u>140,000<sup>e</sup></u>                   | <u>140,000<sup>e</sup></u>                    | <u>50,000<sup>b</sup></u>                   |
| 120-82-1         | 1,2,4-Trichlorobenzene           | <u>1,000<sup>b</sup></u>                     | <u>1,600<sup>b</sup></u>                      | <u>110<sup>b</sup></u>                      |
| <u>71-55-6</u>   | 1,1,1-Trichloroethane            | <u>870,000<sup>e</sup></u>                   | <u>870,000<sup>e</sup></u>                    | <u>89,000<sup>b</sup></u>                   |
| <u>79-00-5</u>   | 1,1,2-Trichloroethane            | <u>170,000<sup>e</sup></u>                   | <u>170,000<sup>e</sup></u>                    | <u>170,000<sup>e</sup></u>                  |
| <u>79-01-6</u>   | Trichloroethylene                | <u>1,700<sup>c</sup></u>                     | <u>3,300°</u>                                 | <u>1,500<sup>b</sup></u>                    |
| <u>75-69-4</u>   | Trichlorofluoromethane           | <u>2,100,000<sup>b</sup></u>                 | <u>3,400,000<sup>b</sup></u>                  | <u>220,000<sup>b</sup></u>                  |
| <u>108-05-4</u>  | Vinyl acetate                    | <u>160,000<sup>b</sup></u>                   | <u>250,000<sup>b</sup></u>                    | <u>1,600<sup>b</sup></u>                    |
| 75-01-4          | Vinyl chloride                   | <u>780<sup>c</sup></u>                       | <u>3,000°</u>                                 | <u>3,000<sup>b</sup></u>                    |
| 108-38-3         | <u>m-Xylene</u>                  | <u>52,000<sup>e</sup></u>                    | <u>52,000<sup>e</sup></u>                     | <u>3,100<sup>b</sup></u>                    |
| <u>95-47-6</u>   | <u>o-Xylene</u>                  | <u>41,000<sup>e</sup></u>                    | <u>41,000<sup>e</sup></u>                     | <u>2,600<sup>b</sup></u>                    |
| 106-42-3         | p-Xylene                         | <u>55,000<sup>e</sup></u>                    | <u>55,000<sup>e</sup></u>                     | <u>3,300<sup>b</sup></u>                    |
| 1330-20-7        | Xylenes (total)                  | <u>49,000<sup>e</sup></u>                    | <u>49,000<sup>e</sup></u>                     | <u>2,900<sup>b</sup></u>                    |

4028

4029 Chemical Name and Remediation Objective Notations

4030

4031 <sup>a</sup> For the outdoor inhalation exposure route, it is acceptable to determine compliance by

4032 meeting either the soil or soil gas remediation objectives. The soil remediation objectives for
 4033 the outdoor inhalation route are located in Appendix B, Tables A and B.

4034

ł s

| 4035 | <u>b</u> | Calculated values correspond to a target hazard quotient of 1                                 |
|------|----------|-----------------------------------------------------------------------------------------------|
| 4036 |          | Caroanatod variaos correspond to a angor nazara quonent or 1.                                 |
| 4037 | <u>c</u> | Calculated values correspond to a cancer risk level of 1 in 1,000,000.                        |
| 4038 |          |                                                                                               |
| 4039 | <u>d</u> | PCBs are a mixture of different congeners. The appropriate values to use for the              |
| 4040 |          | physical/chemical and toxicity parameters depend on the congeners present at the site.        |
| 4041 |          | Persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation   |
| 4042 |          | objectives is desired.                                                                        |
| 4043 |          |                                                                                               |
| 4044 | e        | The value shown is the Cysat value of the chemical in soil gas. The Cysat of the chemical     |
| 4045 |          | becomes the remediation objective if the calculated value exceeds the Cvsat value or if there |
| 4046 |          | are no toxicity criteria available for the inhalation route of exposure.                      |
| 4047 |          |                                                                                               |
| 4048 | f        | Value for the inhalation exposure route is based on Reference Concentration for elemental     |
| 4049 |          | Mercury (CAS No. 7439-97-6). Inhalation remediation objectives only apply at sites where      |
| 4050 |          | elemental Mercury is a contaminant of concern.                                                |
| 4051 |          |                                                                                               |
| 4052 |          | (Source: Added at 36 Ill. Reg, effective)                                                     |

#### Section 742. APPENDIX B Tier 1 Illustrations and Tables

0

#### 

### <u>Section 742.TABLE H Tier 1 Soil Gas and Groundwater Remediation Objectives for the</u> <u>Indoor Inhalation Exposure Route – Diffusion and Advection</u>

#### Q<sub>soil</sub> equals 83.33 cm<sup>3</sup>/sec<sup>a</sup>

|                 |                                          | Soil                                | Gas                                                             | Groun                        | dwater                              |
|-----------------|------------------------------------------|-------------------------------------|-----------------------------------------------------------------|------------------------------|-------------------------------------|
| <u>CAS No.</u>  | Chemical Name                            | Residential<br>(mg/m <sup>3</sup> ) | <u>Industrial/</u><br><u>Commercial</u><br>(mg/m <sup>3</sup> ) | <u>Residential</u><br>(mg/L) | Industrial/<br>Commercial<br>(mg/L) |
| <u>67-64-1</u>  | Acetone                                  | <u>750,000<sup>f</sup></u>          | <u>750,000<sup>f</sup></u>                                      | <u>1,000,000<sup>g</sup></u> | 1,000,000 <sup>g</sup>              |
| 71-43-2         | Benzene                                  | <u>0.37°</u>                        | <u>2.8°</u>                                                     | <u>0.11<sup>c</sup></u>      | <u>0.41°</u>                        |
| <u>111-44-4</u> | Bis(2-chloroethyl)ether                  | <u>0.014<sup>c</sup></u>            | <u>0.087°</u>                                                   | <u>0.083°</u>                | <u>0.43°</u>                        |
| <u>75-27-4</u>  | Bromodichloromethane                     | <u>450,000<sup>f</sup></u>          | <u>450,000<sup>f</sup></u>                                      | <u>6.700<sup>g</sup></u>     | <u>6,700<sup>g</sup></u>            |
| <u>75-25-2</u>  | Bromoform                                | <u>11°</u>                          | <u>52°</u>                                                      | <u>3.1°</u>                  | <u>12°</u>                          |
| <u>71-36-3</u>  | Butanol                                  | <u>29,000<sup>f</sup></u>           | <u>29,000<sup>f</sup></u>                                       | <u>74,000<sup>g</sup></u>    | <u>74,000<sup>g</sup></u>           |
| <u>78-93-3</u>  | 2-Butanone (MEK)                         | <u>6,400<sup>b</sup></u>            | <u>40,000<sup>b</sup></u>                                       | $10,000^{b}$                 | <u>48,000<sup>b</sup></u>           |
| 75-15-0         | Carbon disulfide                         | <u>780<sup>b</sup></u>              | <u>5,300<sup>b</sup></u>                                        | <u>67<sup>b</sup></u>        | <u>210<sup>b</sup></u>              |
| <u>56-23-5</u>  | Carbon tetrachloride                     | <u>0.21<sup>c</sup></u>             | <u>1.5°</u>                                                     | <u>0.020°</u>                | <u>0.076°</u>                       |
| 108-90-7        | Chlorobenzene                            | <u>69<sup>b</sup></u>               | <u>420<sup>b</sup></u>                                          | <u>26<sup>b</sup></u>        | <u>82<sup>b</sup></u>               |
| <u>124-48-1</u> | Chlorodibromomethane                     | <u>57,000<sup>f</sup></u>           | <u>57,000<sup>f</sup></u>                                       | <u>2,600<sup>g</sup></u>     | <u>2,600<sup>g</sup></u>            |
| <u>67-66-3</u>  | Chloroform                               | <u>0.11°</u>                        | <u>0.92°</u>                                                    | <u>0.07<sup>i</sup></u>      | <u>0.15°</u>                        |
| <u>95-57-8</u>  | 2-Chlorophenol                           | <u>17,000<sup>f</sup></u>           | <u>17,000<sup>f</sup></u>                                       | <u>22,000<sup>g</sup></u>    | <u>22,000<sup>g</sup></u>           |
| 75-99-0         | Dalapon <sup>e</sup>                     | <u>1,500<sup>f</sup></u>            | <u>1,500<sup>f</sup></u>                                        | <u>900,000<sup>g</sup></u>   | <u>900,000<sup>g</sup></u>          |
| <u>96-12-8</u>  | 1,2-Dibromo-3-chloropropane <sup>e</sup> | <u>0.0012</u> °                     | <u>0.0062°</u>                                                  | <u>0.00065°</u>              | <u>0.0027°</u>                      |
| 106-93-4        | 1,2-Dibromoethane                        | <u>0.0078<sup>c</sup></u>           | <u>0.048°</u>                                                   | <u>0.0035<sup>c</sup></u>    | <u>0.014°</u>                       |
| <u>95-50-1</u>  | 1,2-Dichlorobenzene                      | <u>290<sup>b</sup></u>              | <u>1,700<sup>b</sup></u>                                        | <u>140<sup>b</sup></u>       | <u>160<sup>g</sup></u>              |
| 106-46-7        | 1,4-Dichlorobenzene                      | <u>1,200<sup>b</sup></u>            | <u>6,800<sup>b</sup></u>                                        | <u>79<sup>g</sup></u>        | <u>79<sup>g</sup></u>               |
| <u>75-71-8</u>  | Dichlorodifluoromethane                  | <u>270<sup>b</sup></u>              | <u>1,700<sup>b</sup></u>                                        | <u>3.0<sup>b</sup></u>       | <u>9.2<sup>b</sup></u>              |
| <u>75-34-3</u>  | 1,1-Dichloroethane                       | <u>690<sup>b</sup></u>              | <u>4,200<sup>b</sup></u>                                        | <u>180<sup>b</sup></u>       | <u>580<sup>b</sup></u>              |
| <u>107-06-2</u> | 1.2-Dichloroethane                       | <u>0.099°</u>                       | <u>0.81°</u>                                                    | <u>0.054°</u>                | <u>0.22°</u>                        |
| 75-35-4         | 1,1-Dichloroethylene                     | <u>240<sup>b</sup></u>              | <u>1,600<sup>b</sup></u>                                        | <u>24<sup>b</sup></u>        | <u>74<sup>b</sup></u>               |
| 156-59-2        | cis-1,2-Dichloroethylene                 | <u>1,100,000<sup>f</sup></u>        | <u>1,100,000<sup>f</sup></u>                                    | <u>3,500<sup>g</sup></u>     | <u>3,500<sup>g</sup></u>            |
| 156-60-5        | trans-1,2-Dichloroethylene               | <u>85<sup>b</sup></u>               | <u>510<sup>b</sup></u>                                          | <u>16<sup>b</sup></u>        | <u>51<sup>b</sup></u>               |
| <u>78-87-5</u>  | 1,2-Dichloropropane                      | <u>0.31°</u>                        | <u>2.3°</u>                                                     | <u>0.12°</u>                 | <u>0.48°</u>                        |
| <u>542-75-6</u> | 1.3-Dichloropropylene (cis + trans)      | <u>0.90°</u>                        | <u>6.2°</u>                                                     | <u>0.14</u> °                | <u>0.52°</u>                        |
| 123-91-1        | p-Dioxane                                | <u>0.22°</u>                        | <u>2.3°</u>                                                     | <u>2.9°</u>                  | <u>25°</u>                          |
| 100-41-4        | Ethylbenzene                             | <u>1,3°</u>                         | <u>9.3°</u>                                                     | <u>0.37<sup>c</sup></u>      | <u>1.4°</u>                         |

| <u>76-44-8</u>  | Heptachlor                       | <u>0.0063°</u>             | <u>0.032°</u>             | <u>0.0025°</u>            | <u>0.0096°</u>            |
|-----------------|----------------------------------|----------------------------|---------------------------|---------------------------|---------------------------|
| 118-74-1        | Hexachlorobenzene                | <u>0.0087°</u>             | <u>0.057<sup>c</sup></u>  | <u>0.0059°</u>            | <u>0.0062<sup>g</sup></u> |
| 77-47-4         | Hexachlorocyclopentadiene        | <u>0.58<sup>b</sup></u>    | <u>2.6<sup>b</sup></u>    | <u>0.084<sup>b</sup></u>  | <u>0.26<sup>b</sup></u>   |
| <u>67-72-1</u>  | Hexachloroethane                 | <u>2,800<sup>f</sup></u>   | <u>2,800<sup>f</sup></u>  | <u>50<sup>g</sup></u>     | <u>50<sup>g</sup></u>     |
| 78-59-1         | Isophorone                       | <u>2,900<sup>b</sup></u>   | <u>3.400<sup>f</sup></u>  | <u>12,000<sup>g</sup></u> | <u>12,000<sup>g</sup></u> |
| 98-82-8         | Isopropylbenzene (Cumene)        | <u>600<sup>b</sup></u>     | <u>3,500<sup>b</sup></u>  | <u>2.7<sup>b</sup></u>    | <u>8.4</u> <sup>b</sup>   |
| 7439-97-6       | Mercury <sup>h</sup>             | <u>0.42<sup>b</sup></u>    | <u>2.5<sup>b</sup></u>    | <u>0.053<sup>b</sup></u>  | <u>0.060<sup>g</sup></u>  |
| 74-83-9         | Methyl bromide                   | <u>6.9<sup>b</sup></u>     | <u>42<sup>b</sup></u>     | <u>1.5</u> <sup>b</sup>   | <u>4.8<sup>b</sup></u>    |
| 1634-04-4       | Methyl tertiary-butyl ether      | <u>3,700<sup>b</sup></u>   | <u>24,000<sup>b</sup></u> | <u>1,900<sup>b</sup></u>  | <u>6,800<sup>b</sup></u>  |
| <u>75-09-2</u>  | Methylene chloride               | <u>5.6°</u>                | <u>45°</u>                | <u>2.1°</u>               | <u>8.2°</u>               |
| <u>91-57-6</u>  | 2-Methylnaphthalene              | <u>530<sup>f</sup></u>     | <u>530<sup>f</sup></u>    | <u>25<sup>g</sup></u>     | <u>25<sup>g</sup></u>     |
| <u>95-48-7</u>  | 2-Methylphenol (o-cresol)        | <u>600<sup>b</sup></u>     | <u>1.800<sup>f</sup></u>  | <u>26,000<sup>g</sup></u> | <u>26,000<sup>g</sup></u> |
| <u>91-20-3</u>  | Naphthalene                      | <u>0.11<sup>c</sup></u>    | <u>0.75°</u>              | <u>0.075<sup>°</sup></u>  | <u>0.32<sup>c</sup></u>   |
| <u>98-95-3</u>  | Nitrobenzene                     | <u>0.077°</u>              | <u>0.57°</u>              | <u>0.34<sup>c</sup></u>   | <u>2.0°</u>               |
| <u>621-64-7</u> | n-Nitrosodi-n-propylamine        | <u>0.0016<sup>c</sup></u>  | <u>0.012<sup>c</sup></u>  | <u>0.044<sup>c</sup></u>  | <u>0.27°</u>              |
| 108-95-2        | Phenol                           | <u>140<sup>b</sup></u>     | <u>1,300<sup>b</sup></u>  | <u>28,000<sup>b</sup></u> | <u>83,000<sup>g</sup></u> |
| 1336-36-3       | Polychlorinated biphenyls (PCBs) | <u>d</u>                   | <u>d</u>                  | <u></u> d                 | d                         |
| 100-42-5        | Styrene                          | <u>1,400<sup>b</sup></u>   | <u>8,500<sup>b</sup></u>  | <u>310<sup>g</sup></u>    | <u>310<sup>g</sup></u>    |
| 127-18-4        | Tetrachloroethylene              | <u>0.55°</u>               | <u>4.0°</u>               | <u>0.091°</u>             | <u>0.34°</u>              |
| 108-88-3        | Toluene                          | <u>6,200<sup>b</sup></u>   | <u>40,000<sup>b</sup></u> | <u>530<sup>g</sup></u>    | <u>530<sup>g</sup></u>    |
| 120-82-1        | 1,2,4-Trichlorobenzene           | <u>5.4<sup>b</sup></u>     | <u>25<sup>b</sup></u>     | <u>1.8</u>                | <u>5.9<sup>b</sup></u>    |
| <u>71-55-6</u>  | 1,1,1-Trichloroethane            | <u>6,600<sup>b</sup></u>   | <u>41,000<sup>b</sup></u> | <u>1,000<sup>b</sup></u>  | <u>1,300<sup>g</sup></u>  |
| <u>79-00-5</u>  | 1,1,2-Trichloroethane            | <u>170,000<sup>f</sup></u> | $170,000^{\rm f}$         | <u>4,400<sup>g</sup></u>  | <u>4,400<sup>g</sup></u>  |
| <u>79-01-6</u>  | Trichloroethylene                | <u>1.5°</u>                | <u>12°</u>                | <u>0.34°</u>              | <u>1.3°</u>               |
| <u>75-69-4</u>  | Trichlorofluoromethane           | <u>860<sup>b</sup></u>     | <u>5,600<sup>b</sup></u>  | <u>26<sup>b</sup></u>     | <u>82<sup>b</sup></u>     |
| 108-05-4        | Vinyl acetate                    | <u>250<sup>b</sup></u>     | <u>1,600<sup>b</sup></u>  | <u>160<sup>b</sup></u>    | <u>550<sup>b</sup></u>    |
| <u>75-01-4</u>  | Vinyl chloride                   | <u>0.29<sup>c</sup></u>    | <u>4.8°</u>               | <u>0.028°</u>             | <u>0.21°</u>              |
| <u>108-38-3</u> | <u>m-Xylene</u>                  | <u>140<sup>b</sup></u>     | <u>850<sup>b</sup></u>    | <u>43<sup>b</sup></u>     | <u>130<sup>b</sup></u>    |
| <u>95-47-6</u>  | <u>o-Xylene</u>                  | <u>120<sup>b</sup></u>     | <u>790<sup>b</sup></u>    | <u>40<sup>b</sup></u>     | <u>130<sup>b</sup></u>    |
| 106-42-3        | p-Xylene                         | <u>130<sup>b</sup></u>     | <u>820<sup>b</sup></u>    | <u>38<sup>b</sup></u>     | <u>120<sup>b</sup></u>    |
| 1330-20-7       | Xylenes (total) <sup>e</sup>     | <u>140<sup>b</sup></u>     | <u>840<sup>b</sup></u>    | <u>30<sup>b</sup></u>     | <u>93<sup>b</sup></u>     |

4059

4060 <u>Chemical Name and Remediation Objective Notations</u>

4061

4062 <sup>a</sup> <u>Compliance is determined by meeting either the soil gas remediation objectives or the</u>

4063 groundwater remediation objectives. See Sections 742.505 and 742.515.

4064

\*

f E

| 4065 | <u>b</u> | Calculated values correspond to a target hazard quotient of 1.                                   |
|------|----------|--------------------------------------------------------------------------------------------------|
| 4066 |          |                                                                                                  |
| 4067 | <u>c</u> | Calculated values correspond to a cancer risk level of 1 in 1,000,000.                           |
| 4068 |          |                                                                                                  |
| 4069 | <u>d</u> | PCBs are a mixture of different congeners. The appropriate values to use for the                 |
| 4070 |          | physical/chemical and toxicity parameters depend on the congeners present at the site.           |
| 4071 |          | Persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation      |
| 4072 |          | objectives is desired.                                                                           |
| 4073 |          |                                                                                                  |
| 4074 | <u>e</u> | Groundwater remediation objective calculated at 25°C. For Dalapon and 1.2-Dibromo-3-             |
| 4075 |          | chloropropane, the critical temperature (Tc) and enthalpy of vaporization at the normal          |
| 4076 |          | boiling point (Hv,b) are not available. For Xylenes (total), the enthalpy of vaporization at the |
| 4077 |          | normal boiling point (Hv,b) is not available.                                                    |
| 4078 |          |                                                                                                  |
| 4079 | f        | The value shown is the Cvsat value of the chemical in soil gas. The Cvsat of the chemical        |
| 4080 |          | becomes the remediation objective if the calculated value exceeds the Cvsat value or if there    |
| 4081 |          | are no toxicity criteria available for the inhalation route of exposure.                         |
| 4082 |          |                                                                                                  |
| 4083 | g        | The value shown is the solubility of the chemical in water. The solubility of the chemical       |
| 4084 |          | becomes the remediation objective if the calculated value exceeds the solubility or if there     |
| 4085 |          | are no toxicity criteria available for the ingestion route of exposure.                          |
| 4086 |          |                                                                                                  |
| 4087 | <u>h</u> | Value for the inhalation exposure route is based on Reference Concentration for elemental        |
| 4088 |          | Mercury (CAS No. 7439-97-6). Inhalation remediation objectives only apply at sites where         |
| 4089 |          | elemental Mercury is a contaminant of concern.                                                   |
| 4090 |          |                                                                                                  |
| 4091 | <u>i</u> | The value shown is the Groundwater Remediation Objective listed in Appendix B, Table E.          |
| 4092 |          |                                                                                                  |
| 4093 | (So      | ource: Added at 36 Ill. Reg, effective)                                                          |

#### 4094 Section 742. APPENDIX B Tier 1 Illustrations and Tables

4095

5

τ. τ

## 4096

#### Section 742.TABLE I Tier 1 Soil Gas and Groundwater Remediation Objectives for the 4097 Indoor Inhalation Exposure Route – Diffusion Only

4098

#### $\underline{Q_{soil}}$ equals 0.0 cm<sup>3</sup>/sec<sup>a,b</sup> 4099

|                 |                                            | <u>Soil</u>                                | Gas                                                             | <u>Groun</u>                 | dwater                                            |
|-----------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------------------------------------------|
| <u>CAS No.</u>  | Chemical Name                              | <u>Residential</u><br>(mg/m <sup>3</sup> ) | <u>Industrial/</u><br><u>Commercial</u><br>(mg/m <sup>3</sup> ) | <u>Residential</u><br>(mg/L) | <u>Industrial/</u><br><u>Commercial</u><br>(mg/L) |
| <u>67-64-1</u>  | Acetone                                    | <u>750,000<sup>g</sup></u>                 | <u>750,000<sup>g</sup></u>                                      | <u>1,000,000<sup>h</sup></u> | <u>1.000,000<sup>h</sup></u>                      |
| <u>71-43-2</u>  | Benzene                                    | <u>41<sup>d</sup></u>                      | <u>300<sup>d</sup></u>                                          | $0.41^{d}$                   | <u>2.6<sup>d</sup></u>                            |
| <u>111-44-4</u> | Bis(2-chloroethyl)ether                    | <u>1.9<sup>d</sup></u>                     | <u>14<sup>d</sup></u>                                           | <u>6.6<sup>d</sup></u>       | <u>48<sup>d</sup></u>                             |
| <u>75-27-4</u>  | Bromodichloromethane                       | <u>450,000<sup>g</sup></u>                 | <u>450,000<sup>g</sup></u>                                      | <u>6,700<sup>h</sup></u>     | <u>6,700<sup>h</sup></u>                          |
| <u>75-25-2</u>  | Bromoform                                  | <u>1,800<sup>d</sup></u>                   | <u>13,000<sup>d</sup></u>                                       | <u>170<sup>d</sup></u>       | <u>1,300<sup>d</sup></u>                          |
| <u>71-36-3</u>  | Butanol                                    | <u>29,000<sup>g</sup></u>                  | <u>29,000<sup>g</sup></u>                                       | $74,000^{h}$                 | <u>74,000<sup>h</sup></u>                         |
| <u>78-93-3</u>  | 2-Butanone (MEK)                           | <u>380,000<sup>g</sup></u>                 | <u>380,000<sup>g</sup></u>                                      | <u>220,000<sup>h</sup></u>   | $220,000^{\rm h}$                                 |
| <u>75-15-0</u>  | Carbon disulfide                           | <u>81,000°</u>                             | <u>500,000<sup>c</sup></u>                                      | <u>170°</u>                  | <u>820°</u>                                       |
| <u>56-23-5</u>  | Carbon tetrachloride                       | <u>24<sup>d</sup></u>                      | <u>180<sup>d</sup></u>                                          | <u>0.052<sup>d</sup></u>     | <u>0.31<sup>d</sup></u>                           |
| <u>108-90-7</u> | Chlorobenzene                              | <u>8,300°</u>                              | <u>51,000°</u>                                                  | <u>130°</u>                  | <u>470<sup>h</sup></u>                            |
| 124-48-1        | Chlorodibromomethane                       | <u>57,000<sup>g</sup></u>                  | <u>57,000<sup>g</sup></u>                                       | <u>2,600<sup>h</sup></u>     | <u>2,600<sup>h</sup></u>                          |
| <u>67-66-3</u>  | Chloroform                                 | <u>12<sup>d</sup></u>                      | <u>87<sup>d</sup></u>                                           | <u>0.17<sup>d</sup></u>      | <u>1.1<sup>d</sup></u>                            |
| <u>95-57-8</u>  | 2-Chlorophenol                             | <u>17,000<sup>g</sup></u>                  | <u>17,000<sup>g</sup></u>                                       | <u>22,000<sup>h</sup></u>    | <u>22,000<sup>h</sup></u>                         |
| <u>75-99-0</u>  | <u>Dalapon<sup>f</sup></u>                 | <u>1,500<sup>g</sup></u>                   | <u>1,500<sup>g</sup></u>                                        | <u>900,000<sup>h</sup></u>   | <u>900,000<sup>h</sup></u>                        |
| <u>96-12-8</u>  | 1,2-Dibromo-3-chloropropane <sup>f</sup>   | <u>0.17<sup>d</sup></u>                    | <u>1.3<sup>d</sup></u>                                          | <u>0.029<sup>d</sup></u>     | <u>0.21<sup>d</sup></u>                           |
| <u>106-93-4</u> | 1,2-Dibromoethane                          | $1.1^{d}$                                  | <u>7.9<sup>d</sup></u>                                          | <u>0.073<sup>d</sup></u>     | <u>0.52<sup>d</sup></u>                           |
| <u>95-50-1</u>  | 1,2-Dichlorobenzene                        | <u>11,000<sup>g</sup></u>                  | <u>11,000<sup>g</sup></u>                                       | <u>160<sup>h</sup></u>       | <u>160<sup>h</sup></u>                            |
| <u>106-46-7</u> | 1,4-Dichlorobenzene                        | <u>8,400<sup>g</sup></u>                   | <u>8,400<sup>g</sup></u>                                        | <u>79<sup>h</sup></u>        | <u>79<sup>h</sup></u>                             |
| <u>75-71-8</u>  | Dichlorodifluoromethane                    | <u>32,000°</u>                             | <u>200,000<sup>c</sup></u>                                      | <u>6.8°</u>                  | <u>33°</u>                                        |
| <u>75-34-3</u>  | 1,1-Dichloroethane                         | <u>81,000°</u>                             | <u>500,000<sup>c</sup></u>                                      | <u>750°</u>                  | <u>4,100<sup>c</sup></u>                          |
| <u>107-06-2</u> | <u>1,2-Dichloroethane</u>                  | <u>10<sup>d</sup></u>                      | <u>76<sup>d</sup></u>                                           | $0.50^{d}$                   | <u>3.5<sup>d</sup></u>                            |
| <u>75-35-4</u>  | 1,1-Dichloroethylene                       | <u>27,000°</u>                             | <u>160,000<sup>c</sup></u>                                      | <u>61°</u>                   | <u>300°</u>                                       |
| <u>156-59-2</u> | cis-1,2-Dichloroethylene                   | <u>1,100,000<sup>g</sup></u>               | <u>1,100,000<sup>g</sup></u>                                    | <u>3,500<sup>h</sup></u>     | <u>3,500<sup>h</sup></u>                          |
| <u>156-60-5</u> | trans-1,2-Dichloroethylene                 | <u>10,000<sup>c</sup></u>                  | <u>63,000°</u>                                                  | <u>58°</u>                   | <u>310°</u>                                       |
| <u>78-87-5</u>  | 1,2-Dichloropropane                        | <u>36<sup>d</sup></u>                      | <u>260<sup>d</sup></u>                                          | $0.67^{d}$                   | $4.5^{d}$                                         |
| <u>542-75-6</u> | <u>1,3-Dichloropropylene (cis + trans)</u> | <u>110<sup>d</sup></u>                     | <u>830<sup>d</sup></u>                                          | <u>0.42<sup>d</sup></u>      | <u>2.6<sup>d</sup></u>                            |
| <u>123-91-1</u> | p-Dioxane                                  | <u>15<sup>d</sup></u>                      | <u>110<sup>d</sup></u>                                          | <u>140<sup>d</sup></u>       | <u>1,000<sup>d</sup></u>                          |
| <u>100-41-4</u> | Ethylbenzene                               | <u>150<sup>d</sup></u>                     | <u>1,100<sup>d</sup></u>                                        | <u>1.3<sup>d</sup></u>       | <u>8.1<sup>d</sup></u>                            |

|                  |                                  | Soil                                       | Gas                                                             | Groundwater                  |                                                   |  |
|------------------|----------------------------------|--------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------------------------------------------|--|
| CAS No.          | Chemical Name                    | <u>Residential</u><br>(mg/m <sup>3</sup> ) | <u>Industrial/</u><br><u>Commercial</u><br>(mg/m <sup>3</sup> ) | <u>Residential</u><br>(mg/L) | <u>Industrial/</u><br><u>Commercial</u><br>(mg/L) |  |
| <u>76-44-8</u>   | Heptachlor                       | <u>0.97<sup>d</sup></u>                    | $\frac{7.1^{d}}{2}$                                             | $\underline{0.058^{d}}$      | <u>0.18<sup>h</sup></u>                           |  |
| <u>118-74-1</u>  | <u>Hexachlorobenzene</u>         | <u>0.28<sup>g</sup></u>                    | <u>0.28<sup>g</sup></u>                                         | <u>0.0062<sup>h</sup></u>    | <u>0.0062<sup>h</sup></u>                         |  |
| <u>77-47-4</u>   | <u>Hexachlorocyclopentadiene</u> | <u>86°</u>                                 | <u>530°</u>                                                     | <u>0.29<sup>c</sup></u>      | <u>1.5<sup>c</sup></u>                            |  |
| <u>67-72-1</u>   | Hexachloroethane                 | <u>2,800<sup>g</sup></u>                   | <u>2,800<sup>g</sup></u>                                        | <u>50<sup>h</sup></u>        | <u>50<sup>h</sup></u>                             |  |
| <u>78-59-1</u>   | Isophorone                       | <u>3,400<sup>g</sup></u>                   | <u>3,400<sup>g</sup></u>                                        | 12,000 <sup>h</sup>          | <u>12,000<sup>h</sup></u>                         |  |
| <u>98-82-8</u>   | Isopropylbenzene (Cumene)        | <u>30,000<sup>g</sup></u>                  | <u>30.000<sup>g</sup></u>                                       | <u>6.2</u> °                 | <u>30°</u>                                        |  |
| <u>7439-97-6</u> | Mercury <sup>i</sup>             | <u>22<sup>g</sup></u>                      | <u>22<sup>g</sup></u>                                           | <u>0.060<sup>h</sup></u>     | <u>0.060<sup>h</sup></u>                          |  |
| <u>74-83-9</u>   | Methyl bromide                   | <u>830°</u>                                | <u>5,100°</u>                                                   | <u>6.1<sup>c</sup></u>       | <u>33°</u>                                        |  |
| <u>1634-04-4</u> | Methyl tertiary-butyl ether      | <u>420,000<sup>c</sup></u>                 | <u>1,200,000<sup>g</sup></u>                                    | <u>30,000°</u>               | <u>51,000<sup>h</sup></u>                         |  |
| <u>75-09-2</u>   | Methylene chloride               | <u>590<sup>d</sup></u>                     | 4.400 <sup>d</sup>                                              | <u>12<sup>d</sup></u>        | <u>84<sup>d</sup></u>                             |  |
| <u>91-57-6</u>   | 2-Methylnaphthalene              | <u>530<sup>g</sup></u>                     | <u>530<sup>g</sup></u>                                          | <u>25<sup>h</sup></u>        | <u>25<sup>h</sup></u>                             |  |
| <u>95-48-7</u>   | 2-Methylphenol (o-cresol)        | <u>1,800<sup>g</sup></u>                   | <u>1,800<sup>g</sup></u>                                        | <u>26,000<sup>h</sup></u>    | $26,000^{\rm h}$                                  |  |
| <u>91-20-3</u>   | Naphthalene                      | <u>14<sup>d</sup></u>                      | <u>100<sup>d</sup></u>                                          | <u>1.8<sup>d</sup></u>       | <u>13<sup>d</sup></u>                             |  |
| <u>98-95-3</u>   | Nitrobenzene                     | <u>9.0<sup>d</sup></u>                     | <u>66<sup>d</sup></u>                                           | <u>23<sup>d</sup></u>        | $170^{d}$                                         |  |
| <u>621-64-7</u>  | n-Nitrosodi-n-propylamine        | <u>0.18<sup>d</sup></u>                    | <u>1.3<sup>d</sup></u>                                          | <u>3.3<sup>d</sup></u>       | <u>24<sup>d</sup></u>                             |  |
| <u>108-95-2</u>  | Phenol                           | <u>1,500<sup>g</sup></u>                   | <u>1,500<sup>g</sup></u>                                        | <u>83,000<sup>h</sup></u>    | $83,000^{h}$                                      |  |
| <u>1336-36-3</u> | Polychlorinated biphenyls (PCBs) | <u></u> e                                  | <u>e</u>                                                        | <u> </u>                     | e                                                 |  |
| <u>100-42-5</u>  | Styrene                          | <u>34,000<sup>g</sup></u>                  | <u>34,000<sup>g</sup></u>                                       | <u>310<sup>h</sup></u>       | <u>310<sup>h</sup></u>                            |  |
| <u>127-18-4</u>  | Tetrachloroethylene              | <u>66<sup>d</sup></u>                      | <u>490<sup>d</sup></u>                                          | <u>0.26<sup>d</sup></u>      | <u>1.6<sup>d</sup></u>                            |  |
| <u>108-88-3</u>  | Toluene                          | <u>140,000<sup>g</sup></u>                 | <u>140,000<sup>g</sup></u>                                      | <u>530<sup>h</sup></u>       | <u>530<sup>h</sup></u>                            |  |
| <u>120-82-1</u>  | 1,2,4-Trichlorobenzene           | <u>800°</u>                                | <u>4,300<sup>g</sup></u>                                        | <u>35<sup>h</sup></u>        | <u>35<sup>h</sup></u>                             |  |
| <u>71-55-6</u>   | 1,1,1-Trichloroethane            | <u>770,000<sup>c</sup></u>                 | <u>870,000<sup>g</sup></u>                                      | <u>1,300<sup>h</sup></u>     | <u>1,300<sup>h</sup></u>                          |  |
| <u>79-00-5</u>   | 1,1,2-Trichloroethane            | <u>170,000<sup>g</sup></u>                 | <u>170,000<sup>g</sup></u>                                      | $4,400^{h}$                  | <u>4,400<sup>h</sup></u>                          |  |
| <u>79-01-6</u>   | Trichloroethylene                | <u>180<sup>d</sup></u>                     | <u>1,300<sup>d</sup></u>                                        | <u>1.1<sup>d</sup></u>       | <u>6.7<sup>d</sup></u>                            |  |
| <u>75-69-4</u>   | Trichlorofluoromethane           | <u>97,000°</u>                             | <u>600,000°</u>                                                 | <u>62°</u>                   | <u>300°</u>                                       |  |
| <u>108-05-4</u>  | Vinyl acetate                    | <u>28,000°</u>                             | <u>170,000°</u>                                                 | <u>2,500°</u>                | <u>15,000°</u>                                    |  |
| <u>75-01-4</u>   | Vinyl chloride                   | <u>30<sup>d</sup></u>                      | <u>440<sup>d</sup></u>                                          | <u>0.065<sup>d</sup></u>     | <u>0.75<sup>d</sup></u>                           |  |
| <u>108-38-3</u>  | <u>m-Xylene</u>                  | <u>17,000<sup>d</sup></u>                  | <u>52,000°</u>                                                  | <u>160°</u>                  | <u>160<sup>h</sup></u>                            |  |
| <u>95-47-6</u>   | <u>o-Xylene</u>                  | <u>14,000<sup>d</sup></u>                  | <u>41,000<sup>c</sup></u>                                       | <u>170<sup>c</sup></u>       | <u>180<sup>h</sup></u>                            |  |
| 106-42-3         | p-Xylene                         | <u>16,000<sup>d</sup></u>                  | <u>55,000°</u>                                                  | <u>140°</u>                  | <u>160<sup>h</sup></u>                            |  |
| <u>1330-20-7</u> | Xylenes (total) <sup>f</sup>     | <u>17,000<sup>d</sup></u>                  | <u>49,000<sup>c</sup></u>                                       | <u>96°</u>                   | <u>110<sup>h</sup></u>                            |  |

4100

r N

## 01 <u>Chemical Name and Remediation Objective Notations</u>

| 4103<br>4104 | <u>a</u> | Compliance is determined by meeting both the soil gas remediation objectives and the groundwater remediation objectives. See Sections 742.505 and 742.515. |
|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4105 4106    | <u>b</u> | Remediation objectives relying on this table require use of institutional controls in                                                                      |
| 4107         | 0        | accordance with Subpart J.                                                                                                                                 |
| 4108         | ē        | <u>Calculated values correspond to a target hazard quotient of 1.</u>                                                                                      |
| 4109         | đ        |                                                                                                                                                            |
| 4110         | ū        | Calculated values correspond to a cancer risk level of 1 in 1,000,000.                                                                                     |
| 4111         |          |                                                                                                                                                            |
| 4112         | e        | PCBs are a mixture of different congeners. The appropriate values to use for the                                                                           |
| 4113         |          | physical/chemical and toxicity parameters depend on the congeners present at the site.                                                                     |
| 4114         |          | Persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation                                                                |
| 4115         |          | objectives is desired                                                                                                                                      |
| 4116         |          |                                                                                                                                                            |
| 4117         | <u>f</u> | Groundwater remediation objective calculated at 25°C. For Dalapon and 1,2-Dibromo-3-                                                                       |
| 4118         |          | chloropropane, the critical temperature (Tc) and enthalpy of vaporization at the normal                                                                    |
| 4119         |          | boiling point (Hv,b) are not available. For Xylenes (total), the enthalpy of vaporization at the                                                           |
| 4120         |          | normal boiling point (Hv,b) is not available.                                                                                                              |
| 4121         |          |                                                                                                                                                            |
| 4122         | g        | The value shown is the Cysat value of the chemical in soil gas. The Cysat of the chemical                                                                  |
| 4123         |          | becomes the remediation objective if the calculated value exceeds the Cysat value or if there                                                              |
| 4124         |          | are no toxicity criteria available for the inhalation route of exposure                                                                                    |
| 4125         |          | <u>are no tomony entena avanable for the miniation foute of exposure.</u>                                                                                  |
| 4126         | h        | The value shown is the solubility of the chemical in water. The solubility of the chemical                                                                 |
| 4127         |          | becomes the remediation objective if the calculated value exceeds the solubility or if there                                                               |
| 4128         |          | are no toxicity criteria available for the inhalation route of exposure                                                                                    |
| 4120         |          | are no toxicity enterna available for the initiation foute of exposure.                                                                                    |
| 4120         | i        | Value for the inhalation exposure route is based on Reference Concentration for elemental                                                                  |
| 4131         |          | Mercury (CAS No. 7439-97-6) Inhalation remediation objectives only apply at sites where                                                                    |
| 4131<br>4132 |          | elemental Mercury is a contaminant of concern                                                                                                              |
| A132         |          | cionentar mereury is a containmant of concern.                                                                                                             |
| A13A         |          | (Source: Added at 36 III Reg. effective )                                                                                                                  |
| 4124         |          | (Source. Aducu at 50 III. Reg, effective)                                                                                                                  |
| 4135         |          |                                                                                                                                                            |

~

۲ : م

#### Section 742. APPENDIX C Tier 2 Illustrations and Tables

4137

Section 742. TABLE A SSL Equations

4138 4139

#### $\frac{THQ \bullet BW \bullet AT \bullet 365 \frac{d}{yr}}{\frac{1}{RfD_o} \bullet 10^{-6} \frac{kg}{mg} \bullet EF \bullet ED \bullet IR_{soil}}$ Equations for Remediation Objectives for Soil Ingestion Noncarcinogenic S1 Exposure Contaminants (mg/kg) Route $\frac{TR \bullet AT_c \bullet 365 \frac{d}{yr}}{SF_o \bullet 10^{-6} \frac{kg}{mg} \bullet EF \bullet IF_{soil-adj}}$ Remediation Objectives for Carcinogenic Contaminants S2 - Residential (mg/kg) $\frac{TR \bullet BW \bullet AT_c \bullet 365 \frac{d}{yr}}{SF_o \bullet 10^{-6} \frac{kg}{mg} \bullet EF \bullet ED \bullet IR_{soil}}$ Remediation Objectives for Carcinogenic Contaminants - Industrial/Commercial, **S**3 Construction Worker (mg/kg) Remediation Objectives for $\frac{THQ \bullet AT \bullet 365 \frac{d}{yr}}{EF \bullet ED \bullet \left(\frac{1}{RFC} \bullet \frac{1}{VF}\right)}$ Equations for Noncarcinogenic Inhalation Contaminants -**S**4 Exposure Residential. Route (Organic Industrial/Commercial Contaminants (mg/kg) and Mercury $\frac{THQ \bullet AT \bullet 365 \frac{d}{yr}}{EF \bullet ED \bullet \left(\frac{1}{RfC} \bullet \frac{1}{VF'}\right)}$ Remediation Objectives for Noncarcinogenic Contaminants -S5 Construction Worker (mg/kg) $\frac{TR \bullet AT_c \bullet 365 \frac{d}{yr}}{URF \bullet 1000 \frac{\mu g}{mg} \bullet EF \bullet ED \frac{1}{VF}}$ Remediation Objectives for Carcinogenic Contaminants **S6** - Residential, Industrial/ Commercial (mg/kg) $\frac{TR \bullet AT_c \bullet 365 \frac{d}{yr}}{URF \bullet 1000 \frac{\mu g}{m\sigma} \bullet EF \bullet ED \frac{1}{VF'}}$ Remediation Objectives for **Carcinogenic** Contaminants **S7** - Construction Worker (mg/kg) Equation for Derivation of $VF = \frac{Q}{C} \bullet \frac{(3.14 \bullet D_A \bullet T)^{1/2}}{(2 \bullet \rho_L \bullet D_A)} \bullet 10^4 \frac{m^2}{cm^2}$ the Volatilization Factor -**S**8 Residential, Industrial/ Commercial, VF $(m^3/kg)$

|                                                                      | Equation for Derivation of<br>the Volatilization Factor –<br>Construction Worker, VF'<br>(m <sup>3</sup> /kg)       | $VF = \frac{VF}{10}$                                                                                                                                                                                                                           | S9  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                      | Equation for Derivation of Apparent Diffusivity, $D_A$ (cm <sup>2</sup> /s)                                         | $D_{A} = \frac{\left(\theta_{\alpha}^{3,33} \bullet D_{j} \bullet H'\right) + \left(\theta_{w}^{3,33} \bullet D_{w}\right)}{\eta^{2}} \bullet \frac{1}{\left(\rho_{b} \bullet K_{d}\right)} + \theta_{w} + \left(\theta_{a} \bullet H'\right)$ | S10 |
| Equations for<br>Inhalation<br>Exposure<br>Route (Fugitive<br>Dusts) | Remediation Objectives for<br>Noncarcinogenic<br>Contaminants –<br>Residential,<br>Industrial/Commercial<br>(mg/kg) | $\frac{THQ \circ AT \circ 365 \frac{d}{yr}}{EF \circ ED \circ \left(\frac{1}{RfC} \circ \frac{1}{PEF}\right)}$                                                                                                                                 | S11 |
|                                                                      | Remediation Objectives for<br>Noncarcinogenic<br>Contaminants –<br>Construction Worker<br>(mg/kg)                   | $\frac{THQ \bullet AT \bullet 365 \frac{d}{yr}}{EF \bullet ED \bullet \left(\frac{1}{RfC} \bullet \frac{1}{PEF'}\right)}$                                                                                                                      | S12 |
|                                                                      | Remediation Objectives for<br>Carcinogenic Contaminants<br>– Residential, Industrial/<br>Commercial (mg/kg)         | $\frac{TR \bullet AT_c \bullet 365 \frac{d}{yr}}{URF \bullet 1000 \frac{\mu g}{mg} \bullet EF \bullet ED \frac{1}{PEF}}$                                                                                                                       | S13 |
|                                                                      | Remediation Objectives for<br>Carcinogenic Contaminants<br>– Construction Worker<br>(mg/kg)                         | $\frac{TR \bullet AT_c \bullet 365 \frac{d}{yr}}{URF \bullet 1000 \frac{\mu g}{mg} \bullet EF \bullet ED \frac{1}{PEF'}}$                                                                                                                      | S14 |
|                                                                      | Equation for Derivation of<br>Particulate Emission Factor,<br>PEF (m <sup>3</sup> /kg)                              | $PEF = \frac{Q}{C} \bullet \frac{3,600 \frac{s}{hr}}{0.036 \bullet (1 - V) \bullet \left(\frac{U_m}{U_t}\right)^3 \bullet F(x)}$                                                                                                               | S15 |
|                                                                      | Equation for Derivation of<br>Particulate Emission Factor,<br>PEF' – Construction<br>Worker (m <sup>3</sup> /kg)    | $PEF' = \frac{PEF}{10}$<br>NOTE: PEF must be the industrial/commercial value                                                                                                                                                                   | S16 |

4140

`

i N

| Equations for<br>the Soil<br>Component of<br>the<br>Groundwater                                               | Remediation Objective<br>(mg/kg)                                                                                                  | $C_{w} \bullet \left[ K_{d} + \frac{\left(\theta_{w} + \theta_{a} \bullet H'\right)}{\rho_{b}} \right]$<br>NOTE: This equation can only be used to model contaminant migration not in the water bearing unit.                                                                      | S17 |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ingestion<br>Exposure Route                                                                                   | Target Soil Leachate<br>Concentration, C <sub>w</sub> (mg/L)                                                                      | $C_w = DF \bullet GW_{obj}$                                                                                                                                                                                                                                                        | S18 |
|                                                                                                               | Soil-Water Partition<br>Coefficient, K <sub>d</sub> (cm <sup>3</sup> /g)                                                          | $K_d = K_{oc} \bullet f_{oc}$                                                                                                                                                                                                                                                      | S19 |
|                                                                                                               | Water-Filled Soil Porosity,<br>$\Theta_w (L_{water}/L_{soil})$                                                                    | $\theta_w = \eta \cdot \left(\frac{I}{K_2}\right)^{1/(2b+3)}$                                                                                                                                                                                                                      | S20 |
|                                                                                                               | Air-Filled Soil Porosity,<br>$\Theta_{a} (L_{air}/L_{soil})$                                                                      | $\theta_a = \eta - \theta_w$                                                                                                                                                                                                                                                       | S21 |
|                                                                                                               | Dilution Factor, DF<br>(unitless)                                                                                                 | $\mathrm{DF} = 1 + \frac{K \bullet i \bullet d}{I \bullet L}$                                                                                                                                                                                                                      | S22 |
|                                                                                                               | Groundwater Remediation<br>Objection for Carcinogenic<br>Contaminants, GW <sub>obj</sub><br>(mg/L)                                | $\frac{TR \bullet BW \bullet AT_c \bullet 365 \frac{d}{yr}}{SF_o \bullet IR_2 \bullet EF \bullet ED}$                                                                                                                                                                              | S23 |
|                                                                                                               | Total Soil Porosity, $\eta$<br>L <sub>pore</sub> /L <sub>soil</sub> )                                                             | $\eta = 1 - \frac{\rho_b}{\rho_s}$                                                                                                                                                                                                                                                 | S24 |
|                                                                                                               | Equation for Estimation of Mixing Zone Depth, d (m)                                                                               | $d = \left(0.0112 \bullet L^2\right)^{0.5} + d_a \left[1 - \exp\frac{\left(-L \bullet 1\right)}{K \bullet i \bullet d_a}\right]$                                                                                                                                                   | S25 |
| Mass-Limit<br>Equations for<br>Inhalation<br>Exposure Route<br>and Soil<br>Component of<br>the<br>Groundwater | Mass-Limit Volatilization<br>Factor for the Inhalation<br>Exposure Route –<br>Residential,<br>Industrial/Commercial VF<br>(m3/kg) | $VF_{M-L} = \frac{Q}{C} \bullet \frac{\left[T_{M-L} \bullet \left(3.15 \bullet 10^7 \frac{s}{yr}\right)\right]}{\rho_b \bullet d_s \bullet 10^6 \frac{cm^3}{m^3}}$ NOTE: This equation may be used when vertical thickness of contamination is known or can be estimated reliably. | S26 |
| Groundwater<br>Ingestion<br>Exposure Route                                                                    | Mass-Limit Volatilization<br>Factor for the Inhalation<br>Exposure Route –<br>Construction Worker, VT' –<br>(m3/kg)               | $VF'_{M-L} = \frac{VF_{M-L}}{10}$                                                                                                                                                                                                                                                  | S27 |

4141

۰.

|                                                                              | Mass-Limit Remediation<br>Objective for Soil<br>Component of the<br>Groundwater Ingestion<br>Exposure Route (mg/kg) | $\frac{\left(C_{w} \bullet I_{M-L} \bullet ED_{M-L}\right)}{\rho_{b} \bullet d_{s}}$ NOTE: This equation may be used when vertical thickness is known or can be estimated reliably. | S28        |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Equation for Derivation of the Soil Saturation<br>Limit, C <sub>sat</sub>    |                                                                                                                     | $C_{sat} = \frac{S}{\rho_b} \bullet \left[ \left( K_d \bullet \rho_b \right) + \theta_w + \left( H' \bullet \theta_a \right) \right]$                                               | S29        |
| Equation for the soil gas component of the Outdoor Inhalation Exposure Route |                                                                                                                     | $RO_{soilgas} = \frac{RO_{soil} \times H \times \rho_b \times 1000}{H' \times \Theta_a + \Theta_w + K_d \times \rho_b}$                                                             | <u>830</u> |

4142 4143 4

? Э

(Source: Amended at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

### 4144 Section 742.APPENDIX C Tier 2 Illustrations and Tables

4145

`

X : N

## 4146 Section 742.TABLE B SSL Parameters

| Symbol           | Parameter                   | Units              | Source                 | Parameter Value(s)               |
|------------------|-----------------------------|--------------------|------------------------|----------------------------------|
| AT               | Averaging Time for          | yr                 |                        | Residential = 6                  |
|                  | Noncarcinogens in Ingestion |                    |                        | Industrial/Commercial = 25       |
|                  | Equation                    |                    |                        | Construction Worker = $0.115$    |
| AT               | Averaging Time for          | yr                 |                        | Residential = 30                 |
|                  | Noncarcinogens in           |                    |                        | Industrial/Commercial = 25       |
|                  | Inhalation Equation         |                    |                        | Construction Worker = $0.115$    |
| AT <sub>c</sub>  | Averaging Time for          | yr                 | SSL                    | 70                               |
|                  | Carcinogens                 |                    |                        |                                  |
| BW               | Body Weight                 | kg                 |                        | Residential = 15, noncarcinogens |
|                  |                             |                    |                        | 70, carcinogens                  |
|                  |                             |                    |                        | Industrial/Commercial = 70       |
|                  |                             |                    |                        | Construction Worker = 70         |
| C <sub>sat</sub> | Soil Saturation             | mg/kg              | Appendix A, Table A or | Chemical-Specific or Calculated  |
|                  | Concentration               |                    | Equation S29 in        | Value                            |
|                  |                             |                    | Appendix C, Table A    |                                  |
| C <sub>w</sub>   | Target Soil Leachate        | mg/L               | Equation S18 in        | Groundwater Standard, Health     |
|                  | Concentration               |                    | Appendix C, Table A    | Advisory concentration, or       |
|                  |                             |                    |                        | Calculated Value                 |
| d                | Mixing Zone Depth           | m                  | SSL or Equation S25 in | 2 m or Calculated Value          |
|                  |                             |                    | Appendix C, Table A    |                                  |
| d <sub>a</sub>   | Aquifer Thickness           | m                  | Field Measurement      | Site-Specific                    |
| ds               | Depth of Source             | m                  | Field Measurement or   | Site-Specific                    |
|                  |                             |                    | Estimation             |                                  |
|                  | (Vertical thickness of      |                    |                        |                                  |
|                  | contamination)              |                    |                        |                                  |
| Symbol           | Parameter                   | Units              | Source                 | Parameter Value(s)               |
| D <sub>A</sub>   | Apparent Diffusivity        | cm <sup>2</sup> /s | Equation S10 in        | Calculated Value                 |
|                  |                             | 2                  | Appendix C, Table A    |                                  |
| Di               | Diffusivity in Air          | cm <sup>2</sup> /s | Appendix C, Table E    | Chemical-Specific                |
| D <sub>w</sub>   | Diffusivity in Water        | cm <sup>2</sup> /s | Appendix C, Table E    | Chemical-Specific                |
| DF               | Dilution Factor             | unitless           | Equation S22 in        | 20 or Calculated Value           |
|                  |                             |                    | Appendix C, Table A    |                                  |
| ED               | Exposure Duration for       | yr                 |                        | Industrial/Commercial = 25       |
|                  | Ingestion of Carcinogens    |                    |                        | Construction Worker = 1          |
| ED               | Exposure Duration for       | yr                 |                        | Residential $= 30$               |
|                  | Inhalation of Carcinogens   |                    |                        | Industrial/Commercial = 25       |
|                  |                             |                    |                        | Construction Worker = 1          |
| ED               | Exposure Duration for       | yr                 |                        | Residential = 6                  |
|                  | Ingestion of                |                    |                        | Industrial/Commercial = 25       |
|                  | Noncarcinogens              |                    |                        | Construction Worker = 1          |
| ED               | Exposure Duration for       | yr                 |                        | Residential = 30                 |
|                  | Inhalation of               |                    |                        | Industrial/Commercial = 25       |
|                  | Noncarcinogens              |                    |                        | Construction Worker = 1          |
| ED               | Exposure Duration for the   | yr                 |                        | Residential = 30                 |
|                  | Direct Ingestion of         |                    |                        | Industrial/Commercial = 25       |

|                        | Groundwater                    |                                        |                           | Construction Worker = 1                         |
|------------------------|--------------------------------|----------------------------------------|---------------------------|-------------------------------------------------|
| ED <sub>M-L</sub>      | Exposure Duration for          | yr                                     | SSL                       | 70                                              |
|                        | Migration to Groundwater       |                                        |                           |                                                 |
| :                      | Mass-Limit Equation S28        |                                        |                           |                                                 |
| EF                     | Exposure Frequency             | d/yr                                   |                           | Residential = 350                               |
|                        |                                |                                        |                           | Industrial/Commercial = 250                     |
|                        |                                |                                        |                           | Construction Worker = 30                        |
| F(x)                   | Function dependent on          | unitless                               | SSL                       | 0.194                                           |
|                        | U <sub>m</sub> /U <sub>t</sub> |                                        |                           |                                                 |
| f <sub>oc</sub>        | Organic Carbon Content of      | g/g                                    | SSL or Field              | Surface Soil = 0.006                            |
|                        | Soil                           |                                        | Measurement (See          | Subsurface soil = 0.002, or Site-               |
|                        |                                |                                        | Appendix C, Table F)      | Specific                                        |
| GW <sub>obj</sub>      | Groundwater Remediation        | mg/L                                   | Appendix B, Table E, 35   | Chemical-Specific or Calculated                 |
|                        | Remediation Objective          |                                        | IAC 620.Subpart F, or     |                                                 |
|                        |                                |                                        | Equation S23 in           |                                                 |
|                        |                                |                                        | Appendix C, Table A       |                                                 |
| H'                     | Henry's Law Constant           | unitless                               | Appendix C, Table E       | Chemical-Specific                               |
| 1                      | Hydraulic Gradient             | m/m                                    | Field Measurement (See    | Site-Specific                                   |
|                        |                                |                                        | Appendix C, Table F)      |                                                 |
| 1                      | Infiltration Rate              | m/yr                                   | SSL                       | 0.3                                             |
| I <sub>M-L</sub>       | Infiltration Rate for          | m/yr                                   | SSL                       | 0.18                                            |
|                        | Migration to Groundwater       |                                        |                           |                                                 |
|                        | Mass-Limit Equation S28        |                                        |                           |                                                 |
| IF <sub>soil-adj</sub> | Age Adjusted Soil Ingestion    | (mg-yr)/                               | SSL                       | 114                                             |
| (residential)          | Factor for Carcinogens         | (kg-d)                                 |                           |                                                 |
| IR <sub>soil</sub>     | Soil Ingestion Rate            | mg/d                                   |                           | Residential = 200                               |
|                        |                                |                                        |                           | Industrial/Commercial = 50                      |
| TD                     |                                | <b>T</b> / 1                           |                           | Construction Worker = 480                       |
| IR <sub>W</sub>        | Daily Water Ingestion Rate     | L/d                                    |                           | Residential = $2$                               |
| 17                     | A 'C TT 1 . 1'                 | 1                                      |                           | Industrial/Commercial = $1$                     |
| К                      | Aquifer Hydraulic              | m/yr                                   | Field Measurement (See    | Site-Specific                                   |
| K Olan                 | Conductivity                   | 3/                                     | Appendix C, Table F)      |                                                 |
| K <sub>d</sub> (Non-   | Soll-water Partition           | cm /g or                               | Equation S19 in           | Calculated Value                                |
| ionizing               | Coefficient                    | L/Kg                                   | Appendix C, Table A       |                                                 |
| V Organics)            | Soil Water Dertition           |                                        | Equation S10 in           | Chamical and all Succific (as                   |
| K <sub>d</sub>         | Soll-water Partition           | $\operatorname{cm}/\operatorname{gor}$ | Equation S19 in           | Amonday C. Table D                              |
| (Ionizing              | Coefficient                    | L/Kg                                   | Appendix C, Table A       | Appendix C, Table I)                            |
| V (In                  | Soil Water Partition           | $am^{3}/a$ or                          | Annandiy C. Table I       | Chamical and all Specific                       |
| $\kappa_{d}(m)$        | Coefficient                    | L/kg                                   | Appendix C, Table J       | Chemical and pri-specific                       |
| V V                    | Organic Carbon Partition       | L/Kg                                   | Appendix C. Table F. or   | Chamical Specific                               |
| K <sub>oc</sub>        | Coefficient                    | L/kg                                   | Appendix C, Table I       | Chemical-Specific                               |
| V                      | Saturated Hydraulic            | L/Kg                                   | Appendix C, Table I       | Site Specific                                   |
| ις.                    | Conductivity                   | iii/yi                                 | Appendix C, Hustration    | Site-specific                                   |
|                        | Conductivity                   |                                        | C Appendix C, Inustration |                                                 |
| T                      | Source Length Parallel to      | m                                      | Field Measurement         | Site-Specific                                   |
|                        | Groundwater Flow               |                                        |                           | She-Speenie                                     |
| DEE                    | Particulate Emission Factor    | $m^3/kg$                               | SSL or Equation S15 in    | $Peridential = 1.32 \cdot 10^9 \text{ or Site}$ |
| T.E.F.                 | rationate Emission racior      | I III / Kg                             | Appendix C Table A        | Specific                                        |
|                        |                                |                                        | Appendix C, Table A       | Industrial/Commercial = 1.24                    |
|                        |                                |                                        |                           | 10 <sup>9</sup> or Site-Specific                |
|                        |                                | I                                      | 1                         | To or one-opeonic                               |

k.

ž N

| PEF'                              | Particulate Emission Factor<br>adjusted for Agitation<br>(construction worker) | m <sup>3</sup> /kg                             | Equation S16 in<br>Appendix C, Table A<br>using PEF<br>(industrial/commercial)                                             | 1.24 • 10 <sup>8</sup> or Site-Specific                                                                                                                                                               |
|-----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q/C (used<br>in VF<br>equations)  | Inverse of the mean<br>concentration at the center<br>of a square source       | (g/m <sup>2</sup> -s)/<br>(kg/m <sup>3</sup> ) | Appendix C, Table H                                                                                                        | Residential = 68.81<br>Industrial/Commercial = 85.81<br>Construction Worker = 85.81                                                                                                                   |
| Q/C (used<br>in PEF<br>equations) | Inverse of the mean<br>concentration at the center<br>of a square source       | (g/m <sup>2</sup> -s)/<br>(kg/m <sup>3</sup> ) | SSL or Appendix C,<br>Table H                                                                                              | Residential = 90.80<br>Industrial/Commercial = 85.81<br>Construction Worker = 85.81                                                                                                                   |
| RfC                               | Inhalation Reference<br>Concentration                                          | mg/m³                                          | Illinois EPA:         http://www.epa.state.il.us         /land/taco/toxicity-         values.xlsHEPA         (IRIS/HEAST*) | Toxicological-Specific (Note: for<br>Construction Workers use<br>subchronic reference<br>concentrations)                                                                                              |
| RfD₀                              | Oral Reference Dose                                                            | mg/(kg-<br>d)                                  | Illinois EPA:<br>http://www.epa.state.il.us<br>/land/taco/toxicity-<br>values.xlsHEPA<br>(IRIS/HEAST <sup>®</sup> )        | Toxicological-Specific (Note: for<br>Construction Workers use<br>subchronic reference doses)                                                                                                          |
| S                                 | Solubility in Water                                                            | mg/L                                           | Appendix C, Table E                                                                                                        | Chemical-Specific                                                                                                                                                                                     |
| SF。                               | Oral Slope Factor                                                              | (mg/kg-<br>d) <sup>-1</sup>                    | Illinois EPA:<br>http://www.epa.state.il.us<br>/land/taco/toxicity-<br>values.xlsIEPA<br>(IRIS/HEAST <sup>®</sup> )        | Toxicological-Specific                                                                                                                                                                                |
| Т                                 | Exposure Interval                                                              | S                                              |                                                                                                                            | Residential = $9.5 \cdot 10^8$<br>Industrial/Commercial = $7.9 \cdot 10^8$<br>Construction Worker = $3.6 \cdot 10^6$                                                                                  |
| T <sub>M-L</sub>                  | Exposure Interval for Mass-<br>Limit Volatilization Factor<br>Equation S26     | yr                                             | SSL                                                                                                                        | 30                                                                                                                                                                                                    |
| THQ                               | Target Hazard Quotient                                                         | unitless                                       | SSL                                                                                                                        | 1                                                                                                                                                                                                     |
| TR                                | Target Cancer Risk                                                             | unitless                                       |                                                                                                                            | Residential = $10^{-6}$ at the point of<br>human exposure<br>Industrial/Commercial = $10^{-6}$ at<br>the point of human exposure<br>Construction Worker = $10^{-6}$ at the<br>point of human exposure |
| U <sub>m</sub>                    | Mean Annual Windspeed                                                          | m/s                                            | SSL                                                                                                                        | 4.69                                                                                                                                                                                                  |
| URF                               | Inhalation Unit Risk Factor                                                    | (μg/m <sup>3</sup> ) <sup>-1</sup>             | Illinois EPA:<br>http://www.epa.state.il.u<br>s/land/taco/toxicity-<br>values.xlsHEPA<br>(IRIS/HEAST <sup>a</sup> )        | Toxicological-Specific                                                                                                                                                                                |
| Ut                                | Equivalent Threshold Value of Windspeed at 7 m                                 | m/s                                            | SSL                                                                                                                        | 11.32                                                                                                                                                                                                 |
| V                                 | Fraction of Vegetative<br>Cover                                                | unitless                                       | SSL or Field<br>Measurement                                                                                                | 0.5 of Site-Specific                                                                                                                                                                                  |
| VF                                | Volatilization Factor                                                          | m³/kg                                          | Equation S8 in                                                                                                             | Calculated Value                                                                                                                                                                                      |

.

| VF'                | Volatilization Factor<br>adjusted for Agitation               | m³/kg                                 | Equation S9 in<br>Appendix C. Table A                    | Calculated Value                                                                                                                                                                    |
|--------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VF <sub>M-L</sub>  | Mass-Limit Volatilization<br>Factor                           | m <sup>3</sup> /kg                    | Equation S26 in<br>Appendix C, Table A                   | Calculated Value                                                                                                                                                                    |
| VF' <sub>M-L</sub> | Mass-Limit Volatilization<br>Factor adjusted for<br>Agitation | m <sup>3</sup> /kg                    | Equation S27 in<br>Appendix C, Table A                   | Calculated Value                                                                                                                                                                    |
| η                  | Total Soil Porosity                                           | L <sub>pore</sub> /L <sub>soil</sub>  | SSL or Equation S24 in<br>Appendix C, Table A            | 0.43, or<br>Gravel = 0.25<br>Sand = 0.32<br>Silt = 0.40<br>Clay = 0.36, or<br>Calculated Value                                                                                      |
| $\theta_a$         | Air-Filled Soil Porosity                                      | L <sub>air</sub> /L <sub>soil</sub>   | SSL or Equation S21 in<br>Appendix C, Table A            | Surface Soil (top 1 meter) = 0.28<br>Subsurface Soil (below 1 meter) =<br>0.13, or<br>Gravel = 0.05<br>Sand = 0.14<br>Silt = 0.24<br>Clay = 0.19, or<br>Calculated Value            |
| θ <sub>w</sub>     | Water-Filled Soil Porosity                                    | L <sub>water</sub> /L <sub>soil</sub> | SSL or Equation S20 in<br>Appendix C, Table A            | Surface Soil (top 1 meter) = $0.15$<br>Subsurface Soil (below 1 meter) = $0.30$ , or<br>Gravel = $0.20$<br>Sand = $0.18$<br>Silt = $0.16$<br>Clay = $0.17$ , or<br>Calculated Value |
| ρ                  | Dry Soil Bulk Density                                         | kg/L or<br>g/cm <sup>3</sup>          | SSL or Field<br>Measurement (See<br>Appendix C, Table F) | 1.5, or<br>Gravel = 2.0<br>Sand = 1.8<br>Silt = 1.6<br>Clay = 1.7, or<br>Site-Specific                                                                                              |
| ρs                 | Soil Particle Density                                         | g/cm <sup>3</sup>                     | SSL or Field<br>Measurement (See<br>Appendix C, Table F) | 2.65, or<br>Site-Specific                                                                                                                                                           |
| ρ <sub>w</sub>     | Water Density                                                 | g/cm <sup>3</sup>                     | SSL                                                      | 1                                                                                                                                                                                   |
| 1/(2b+3)           | Exponential in Equation S20                                   | unitless                              | Appendix C, Table K<br>Appendix C, Illustration<br>C     | Site-Specific                                                                                                                                                                       |

4148

4 •

| 4149 | a HEAST = Health Effects Assessment Summary Tables. USEPA, Office of Solid Waste and |
|------|--------------------------------------------------------------------------------------|
| 4150 | Emergency Response. EPA/SQO/R-95/036. Updated Quarterly.                             |
| 4151 |                                                                                      |
| 4152 | (Source: Amended at 36 Ill. Reg, effective)                                          |

#### 4153 Section 742. APPENDIX C Tier 2 Illustrations and Tables

4154

### 4155 Section 742. TABLE E Default Physical and Chemical Parameters

4156

| CAS No.                           | Chemical                   | Solubility in<br>Water (S)<br>(mg/L) | Diffusivit<br>y in Air<br>(di)<br>(cm <sup>2</sup> /s) | $\frac{\text{Diffusivity}}{\text{in Water}}$ $\frac{(D_w)}{(\text{cm}^2/\text{s})}$ | Dimensionless<br>Henry's Law<br>Constant (H')<br>(25°C) | Dimensionless<br>Henry's Law<br>Constant (H')<br>(13°C) | Organic<br>Carbon<br>Partition<br>Coefficient<br>(K <sub>oc</sub> ) (L/kg) | $\frac{\text{First Order}}{\text{Degradation}}$ $\frac{\text{Constant}}{(\lambda)(d^{-1})}$ | <u>Vapor</u><br><u>Pressure</u><br>(mm/Hg) |
|-----------------------------------|----------------------------|--------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|
|                                   |                            |                                      |                                                        |                                                                                     |                                                         | inhalation<br>exposure route                            |                                                                            |                                                                                             |                                            |
| <u>Neutral</u><br><u>Organics</u> |                            |                                      |                                                        |                                                                                     |                                                         |                                                         |                                                                            |                                                                                             |                                            |
| <u>83-32-9</u>                    | Acenaphthene               | <u>3.60E+00</u>                      | <u>4.76E-02</u>                                        | <u>7.69E-06</u>                                                                     | <u>6.60E-03</u>                                         | b                                                       | <u>6.30E+03</u>                                                            | <u>3.40E-03</u>                                                                             | <u>2.50E-03</u>                            |
| <u>67-64-1</u>                    | Acetone                    | <u>1.00E+06</u>                      | <u>1.24E-01</u>                                        | <u>1.14E-05</u>                                                                     | <u>1.60E-03</u>                                         | <u>9.73E-04</u>                                         | <u>7.80E-01</u>                                                            | <u>4.95E-02</u>                                                                             | <u>2.30E+02</u>                            |
| <u>15972-60-8</u>                 | Alachlor                   | <u>2.40E+02</u>                      | 2.13E-02                                               | <u>5.28E-06</u>                                                                     | <u>3.40E-06</u>                                         | b                                                       | <u>3.20E+03</u>                                                            | <u>No Data</u>                                                                              | <u>2.20E-05</u>                            |
| <u>116-06-3</u>                   | Aldicarb                   | <u>6.03E+03</u>                      | <u>3.18E-02</u>                                        | <u>7.24E-06</u>                                                                     | <u>5.90E-08</u>                                         | <u>b</u>                                                | <u>1.29E+01</u>                                                            | <u>1.09E-03</u>                                                                             | <u>3.47E-05</u>                            |
| <u>309-00-2</u>                   | Aldrin                     | <u>1.70E-02</u>                      | <u>1.96E-02</u>                                        | <u>4.86E-06</u>                                                                     | <u>7.00E-03</u>                                         | b                                                       | <u>2.50E+05</u>                                                            | <u>5.90E-04</u>                                                                             | <u>6.00E-06</u>                            |
| <u>120-12-7</u>                   | Anthracene                 | <u>4.30E-02</u>                      | <u>3.85E-02</u>                                        | <u>7.74E-06</u>                                                                     | <u>2.70E-03</u>                                         | b                                                       | <u>2.50E+04</u>                                                            | <u>7.50E-04</u>                                                                             | 2.70E-06                                   |
| <u>1912-24-9</u>                  | Atrazine                   | <u>7.00E+01</u>                      | <u>2.59E-02</u>                                        | <u>6.67E-06</u>                                                                     | <u>9.68E-08</u>                                         | b                                                       | <u>3.63E+02</u>                                                            | No Data                                                                                     | 2.70E-07                                   |
| <u>71-43-2</u>                    | Benzene                    | <u>1.80E+03</u>                      | <u>8.80E-02</u>                                        | <u>1.02E-05</u>                                                                     | <u>2.30E-01</u>                                         | <u>1.34E-01</u>                                         | <u>5.00E+01</u>                                                            | <u>9.00E-04</u>                                                                             | <u>9.50E+01</u>                            |
| <u>56-55-3</u>                    | Benzo(a)anthracene         | <u>9.40E-03</u>                      | <u>5.10E-02</u>                                        | <u>9.00E-06</u>                                                                     | <u>1.39E-04</u>                                         | b                                                       | <u>4.00E+05</u>                                                            | <u>5.10E-04</u>                                                                             | <u>1.10E-07</u>                            |
| <u>205-99-2</u>                   | Benzo(b)fluoranthene       | <u>1.50E-03</u>                      | <u>2.23E-02</u>                                        | <u>5.56E-06</u>                                                                     | <u>4.55E-03</u>                                         | b                                                       | <u>1.05E+06</u>                                                            | <u>5.70E-04</u>                                                                             | <u>5.00E-07</u>                            |
| <u>207-08-9</u>                   | Benzo(k)fluoranthene       | <u>8.00E-04</u>                      | <u>2.23E-02</u>                                        | <u>5.56E-06</u>                                                                     | <u>3.40E-05</u>                                         | b                                                       | <u>1.00E+06</u>                                                            | <u>1.60E-04</u>                                                                             | 2.00E-09                                   |
| <u>65-85-0</u>                    | Benzoic Acid               | <u>3.40E+03</u>                      | <u>7.02E-02</u>                                        | <u>7.97E-06</u>                                                                     | <u>1.56E-06</u>                                         | b                                                       | <u>1.21E+00<sup>d</sup></u>                                                | No Data                                                                                     | <u>7.00E-04</u>                            |
| <u>50-32-8</u>                    | Benzo(a)pyrene             | <u>1.60E-03</u>                      | <u>4.30E-02</u>                                        | <u>9.49E-06</u>                                                                     | <u>4.50E-05</u>                                         | b                                                       | <u>7.90E+05</u>                                                            | <u>6.50E-04</u>                                                                             | <u>5.50E-09</u>                            |
| <u>111-44-4</u>                   | Bis(2-chloroethyl) ether   | <u>1.72E+04</u>                      | <u>4.13E-02</u>                                        | <u>7.53E-06</u>                                                                     | <u>7.40E-04</u>                                         | <u>2.94E-04</u>                                         | <u>1.26E+01</u>                                                            | <u>1.90E-03</u>                                                                             | 1.55E+00                                   |
| <u>117-81-7</u>                   | Bis(2-ethylhexyl)phthalate | <u>3.40E-01</u>                      | <u>3.51E-02</u>                                        | <u>3.66E-06</u>                                                                     | <u>4.10E-06</u>                                         | <u>b</u>                                                | <u>1.00E+05</u>                                                            | <u>1.80E-03</u>                                                                             | 6.80E-08                                   |
| <u>75-27-4</u>                    | Bromodichloromethane       | <u>6.70E+03</u>                      | <u>5.61E-02</u>                                        | <u>1.06E-05</u>                                                                     | <u>6.60E-02</u>                                         | <u>3.71E-02</u>                                         | <u>5.00E+01</u>                                                            | No Data                                                                                     | <u>5.00E+01</u>                            |
| <u>75-25-2</u>                    | Bromoform                  | <u>3.10E+03</u>                      | <u>1.49E-02</u>                                        | <u>1.03E-05</u>                                                                     | <u>2.19E-02</u>                                         | <u>1.06E-02</u>                                         | <u>9.12E+01</u>                                                            | <u>1.90E-03</u>                                                                             | <u>5.51E+00</u>                            |
| <u>71-36-3</u>                    | Butanol                    | <u>7.40E+04</u>                      | <u>8.00E-02</u>                                        | <u>9.30E-06</u>                                                                     | <u>3.61E-04</u>                                         | <u>1.55E-04</u>                                         | <u>6.00E+00</u>                                                            | <u>1.28E-02</u>                                                                             | <u>7.00E+00</u>                            |
| <u>78-93-3</u>                    | 2-Butanone (MEK)           | <u>2.20E+05</u>                      | <u>8.08E-02</u>                                        | <u>9.8E-06</u>                                                                      | <u>2.30E-03</u>                                         | <u>1.32E-03</u>                                         | <u>2.00E+00</u>                                                            | <u>4.95E-02</u>                                                                             | <u>9.50E+01</u>                            |

| <u>85-68-7</u>   | Butyl Benzyl Phthalate          | <u>2.70E+00</u> | <u>1.99E-02</u> | 4.89E-06        | <u>5.30E-05</u>  | <u> </u>        | <u>6.30E+04</u>             | <u>3.85E-03</u> | 8.30E-06        |
|------------------|---------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------------------|-----------------|-----------------|
| <u>86-74-8</u>   | Carbazole                       | <u>1.20E+00</u> | <u>4.17E-02</u> | <u>7.45E-06</u> | <u>3.60E-06</u>  | <u></u> b       | <u>4.00E+03</u>             | <u>No Data</u>  | <u>7.00E-04</u> |
| <u>1563-66-2</u> | <u>Carbofuran</u>               | <u>3.20E+02</u> | <u>2.37E-02</u> | <u>5.95E-06</u> | <u>1.27E-07</u>  | b               | <u>1.91E+02</u>             | No Data         | <u>4.85E-06</u> |
| <u>75-15-0</u>   | Carbon Disulfide                | <u>1.20E+03</u> | <u>1.04E-01</u> | <u>1.00E-05</u> | <u>1.23E+00</u>  | <u>8.06E-01</u> | <u>6.30E+01</u>             | No Data         | <u>3.60E+02</u> |
| <u>56-23-5</u>   | Carbon Tetrachloride            | <u>7.90E+02</u> | 7.80E-02        | <u>8.80E-06</u> | <u>1.23E+00</u>  | <u>7.48E-01</u> | 2.00E+02                    | <u>1.90E-03</u> | <u>1.20E+02</u> |
| <u>57-74-9</u>   | Chlordane                       | <u>5.60E-02</u> | <u>1.79E-02</u> | <u>4.37E-06</u> | <u>2.00E-03</u>  | b               | 2.50E+05                    | <u>2.50E-04</u> | <u>9.80E-06</u> |
| <u>106-47-8</u>  | <u>p-Chloroaniline</u>          | <u>5.30E+03</u> | <u>6.99E-02</u> | <u>1.01E-05</u> | <u>4.76E-05</u>  | <u>b</u>        | <u>6.31E+01</u>             | <u>No Data</u>  | <u>1.23E-02</u> |
| <u>108-90-7</u>  | Chlorobenzene                   | <u>4.70E+02</u> | <u>7.30E-02</u> | 8.70E-06        | <u>1.50E-01</u>  | <u>7.93E-02</u> | 2.00E+02                    | 2.30E-03        | <u>1.20E+01</u> |
| 124-48-1         | Chlorodibromomethane            | <u>2.60E+03</u> | <u>3.66E-02</u> | <u>1.05E-05</u> | <u>3.20E-02</u>  | 2.07E-02        | <u>6.92E+01</u>             | <u>3.85E-03</u> | <u>4.90E+00</u> |
| <u>67-66-3</u>   | <u>Chloroform</u>               | <u>7.90E+03</u> | <u>1.04E-01</u> | <u>1.00E-05</u> | <u>1.50E-01</u>  | 9.18E-02        | <u>5.00E+01</u>             | <u>3.90E-04</u> | 2.00E+02        |
| <u>95-57-8</u>   | 2-Chlorophenol                  | <u>2.20E+04</u> | <u>6.61E-02</u> | <u>9.46E-06</u> | <u>1.60E-02</u>  | 7.28E-03        | <u>5.93E+01<sup>d</sup></u> | No Data         | <u>2.34E+00</u> |
| <u>218-01-9</u>  | Chrysene                        | <u>6.30E-03</u> | <u>2.44E-02</u> | <u>6.21E-06</u> | <u>3.90E-03</u>  | <u>b</u>        | <u>4.00E+05</u>             | <u>3.50E-04</u> | <u>6.20E-09</u> |
| <u>94-75-7</u>   | <u>2.4-D</u>                    | <u>6.77E+02</u> | 5.88E-02        | <u>6.49E-06</u> | <u>4.18E-07</u>  | <u>b</u>        | <u>5.75E+02</u>             | <u>3.85E-03</u> | 6.00E-07        |
| 72-54-8          | <u>4.4'-DDD</u>                 | <u>9.00E-02</u> | 2.27E-02        | <u>5.79E-06</u> | <u>1.60E-04</u>  | <u>b</u>        | <u>7.90E+05</u>             | 6.20E-05        | <u>6.70E-07</u> |
| <u>72-55-9</u>   | <u>4.4'-DDE</u>                 | <u>1.20E-01</u> | 2.38E-02        | <u>5.87E-06</u> | <u>8.60E-04</u>  | b               | <u>4.00E+05</u>             | 6.20E-05        | <u>6.00E-06</u> |
| <u>50-29-3</u>   | <u>4,4'-DDT</u>                 | 2.50E-02        | <u>1.99E-02</u> | <u>4.95E-06</u> | <u>3.30E-04</u>  | b               | 2.00E+06                    | <u>6.20E-05</u> | <u>1.60E-07</u> |
| <u>75-99-0</u>   | <u>Dalapon</u>                  | <u>9.00E+05</u> | <u>6.08E-02</u> | <u>9.45E-06</u> | 2.64E-06         | NA              | <u>4.80E+00</u>             | <u>5.78E-03</u> | <u>1.90E-01</u> |
| <u>53-70-3</u>   | Dibenzo(a,h)anthracene          | 2.50E-03        | <u>2.11E-02</u> | <u>5.24E-06</u> | <u>6.10E-07</u>  | <u></u> b       | <u>2.50E+06</u>             | <u>3.70E-04</u> | <u>1.00E-10</u> |
| <u>96-12-8</u>   | 1.2-Dibromo-3-<br>chloropropane | <u>1.20E+03</u> | 2.68E-02        | <u>7.02E-06</u> | <u>6.20E-03°</u> | NA              | <u>7.90E+01</u>             | <u>1.93E-03</u> | <u>5.80E-01</u> |
| <u>106-93-4</u>  | 1.2-Dibromoethane               | 4.00E+03        | <u>4.37E-02</u> | <u>8.44E-06</u> | <u>3.00E-02</u>  | <u>1.54E-02</u> | <u>5.00E+01</u>             | <u>5.78E-03</u> | <u>1.30E+01</u> |
| <u>84-74-2</u>   | Di-n-butyl Phthalate            | <u>1.10E+01</u> | <u>4.38E-02</u> | <u>7.86E-06</u> | <u>7.40E-05</u>  | a               | 4.00E+04                    | <u>3.01E-02</u> | 7.30E-05        |
| <u>1918-00-9</u> | Dicamba                         | 4.50E+03        | 2.37E-02        | <u>5.95E-06</u> | 2.18E-09         | a               | <u>2.95E+00</u>             | No Data         | <u>3.38E-05</u> |
| <u>95-50-1</u>   | 1.2-Dichlorobenzene             | <u>1.56E+02</u> | <u>6.90E-02</u> | <u>7.90E-06</u> | <u>7.79E-02</u>  | <u>3.56E-02</u> | <u>5.75E+02</u>             | <u>1.90E-03</u> | <u>1.36E+00</u> |
| <u>106-46-7</u>  | 1.4-Dichlorobenzene             | <u>7.90E+01</u> | <u>6.90E-02</u> | <u>7.90E-06</u> | <u>9.80E-02</u>  | <u>4.69E-02</u> | <u>7.90E+02</u>             | <u>1.90E-03</u> | 1.00E+00        |
| <u>91-94-1</u>   | 3.3-Dichlorobenzidine           | <u>3.10E+00</u> | <u>2.59E-02</u> | <u>6.74E-06</u> | <u>1.60E-07</u>  | a               | 2.82E+03                    | 1.90E-03        | <u>3.71E-08</u> |
| <u>75-71-8</u>   | Dichlorodifluoromethane         | 2.80E+02        | 7.60E-02        | 1.08E-05        | <u>1.41E+01</u>  | 8.14E+00        | <u>6.17E+01</u>             | <u>1.92E-03</u> | 4.85E+03        |

.

|                  | · · · · · · · · · · · · · · · · · · ·         |                 |                 |                 |                 |                      |                             |                 |                 |
|------------------|-----------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------------------|-----------------|-----------------|
| <u>75-34-3</u>   | 1,1-Dichloroethane                            | <u>5.10E+03</u> | <u>7.42E-02</u> | <u>1.05E-05</u> | <u>2.30E-01</u> | <u>1.42E-01</u>      | <u>3.20E+01</u>             | <u>1.90E-03</u> | 2.30E+02        |
| <u>107-06-2</u>  | 1.2-Dichloroethane                            | <u>8.50E+03</u> | <u>1.04E-02</u> | <u>9.90E-06</u> | <u>4.00E-02</u> | 2.29E-02             | <u>2.00E+01</u>             | 1.90E-03        | <u>7.90E+01</u> |
| <u>75-35-4</u>   | 1,1-Dichloroethylene                          | <u>2.30E+03</u> | <u>9.00E-02</u> | <u>1.04E-05</u> | <u>1.10E+00</u> | <u>7.10E-01</u>      | 5.00E+01                    | <u>5.30E-03</u> | <u>6.00E+02</u> |
| <u>156-59-2</u>  | Cis-1,2-Dichloroethylene                      | <u>3.50E+03</u> | <u>8.86E-02</u> | <u>1.13E-05</u> | 1.70E-01        | 1.00E-01             | <u>4.00E+01</u>             | <u>2.40E-04</u> | <u>2.00E+02</u> |
| <u>156-60-5</u>  | Trans-1.2-Dichloroethylene                    | <u>6.30E+03</u> | <u>7.03E-02</u> | <u>1.19E-05</u> | <u>3.90E-01</u> | <u>2.43E-01</u>      | <u>5.00E+01</u>             | <u>2.40E-04</u> | <u>3.30E+02</u> |
| <u>120-83-2</u>  | 2.4-Dichlorophenol                            | <u>4.50E+03</u> | <u>4.89E-02</u> | <u>8.77E-06</u> | 1.30E-04        | <u>a</u>             | 7.32E+02 <sup>d</sup>       | 2.70E-04        | <u>6.70E-02</u> |
| <u>78-87-5</u>   | 1,2-Dichloropropane                           | <u>2.80E+03</u> | <u>7.82E-02</u> | <u>8.73E-06</u> | <u>1.10E-01</u> | <u>6.52E-02</u>      | <u>5.00E+01</u>             | 2.70E-04        | <u>5.20E+01</u> |
| <u>542-75-6</u>  | <u>1.3-Dichloropropylene</u><br>(cis + trans) | <u>2.80E+03</u> | <u>6.26E-02</u> | <u>1.00E-05</u> | <u>7.40E-01</u> | <u>3.98E-01</u>      | 2.00E+01                    | <u>6.10E-02</u> | <u>3.40E+01</u> |
| <u>60-57-1</u>   | <u>Dieldrin</u>                               | <u>2.00E-01</u> | <u>1.92E-02</u> | <u>4.74E-06</u> | <u>6.2E-04</u>  | <u></u> a            | 2.50E+04                    | <u>3.20E-04</u> | <u>5.9E-06</u>  |
| <u>84-66-2</u>   | Diethyl Phthalate                             | <u>1.10E+03</u> | <u>2.49E-02</u> | <u>6.35E-06</u> | <u>1.80E-05</u> | <u></u> a            | 3.20E+02                    | <u>6.19E-03</u> | 1.60E-03        |
| <u>105-67-9</u>  | 2.4-Dimethylphenol                            | <u>7.90E+03</u> | <u>6.43E-02</u> | <u>8.69E-06</u> | 8.20E-05        | <u></u> a            | 2.00E+02                    | <u>4.95E-02</u> | <u>9.80E-02</u> |
| <u>75-71-8</u>   | 1.3-Dinitrobenzene                            | <u>8.60E+02</u> | <u>4.55E-02</u> | <u>8.46E-06</u> | <u>2.30E-07</u> | <u>a</u>             | <u>3.20E+01</u>             | <u>1.92E-03</u> | 9.00E-04        |
| <u>51-28-5</u>   | 2.4-Dinitrophenol                             | <u>2.79E+03</u> | <u>2.73E-02</u> | <u>9.06E-06</u> | <u>1.82E-05</u> | <u>a</u>             | <u>3.24E+01</u>             | <u>1.32E-03</u> | <u>5.10E-03</u> |
| <u>121-14-2</u>  | 2,4-Dinitrotoluene                            | <u>2.70E+02</u> | <u>2.03E-01</u> | <u>7.06E-06</u> | <u>3.80E-06</u> | <u>a</u>             | <u>8.90E+01</u>             | <u>1.92E-03</u> | <u>1.47E-04</u> |
| <u>606-20-2</u>  | 2,6-Dinitrotoluene                            | <u>1.82E+02</u> | <u>3.70E-02</u> | <u>7.76E-06</u> | <u>3.06E-05</u> | a                    | <u>4.90E+01</u>             | <u>1.92E-03</u> | <u>5.67E-04</u> |
| <u>88-85-7</u>   | Dinoseb                                       | <u>5.20E+01</u> | <u>2.45E-02</u> | <u>6.25E-06</u> | <u>1.87E-05</u> | a                    | <u>9.17E+01<sup>d</sup></u> | 2.82E-03        | 7.50E-05        |
| <u>117-84-0</u>  | Di-n-octyl Phthalate                          | <u>2.00E-02</u> | <u>1.73E-02</u> | <u>4.17E-06</u> | <u>2.74E-03</u> | <u>a</u>             | <u>1.30E+05</u>             | <u>1.90E-03</u> | 2.60E-06        |
| <u>123-91-1</u>  | <u>p-Dioxane</u>                              | <u>1.00E+06</u> | <u>2.29E-01</u> | <u>1.02E-05</u> | <u>1.97E-04</u> | <u>1.07E-04</u>      | <u>7.20E-01</u>             | <u>1.92E-03</u> | <u>3.81E+01</u> |
| <u>115-29-7</u>  | <u>Endosulfan</u>                             | <u>5.10E-01</u> | <u>1.85E-02</u> | <u>4.55E-06</u> | <u>4.51E-04</u> | <u>a</u>             | <u>5.00E+03</u>             | <u>7.63E-02</u> | 1.00E-05        |
| <u>145-73-3</u>  | <u>Endothall</u>                              | <u>2.10E+04</u> | <u>2.91E-02</u> | <u>8.07E-06</u> | <u>1.58E-14</u> | <u>a</u>             | <u>7.59E+01</u>             | <u>No Data</u>  | <u>1.57E-10</u> |
| <u>72-20-8</u>   | <u>Endrin</u>                                 | <u>2.50E-01</u> | <u>1.92E-02</u> | <u>4.74E-6</u>  | <u>3.08E-04</u> | <u></u> a            | <u>3.20E+04</u>             | <u>3.20E-04</u> | <u>3.00E-06</u> |
| <u>100-41-4</u>  | <u>Ethylbenzene</u>                           | <u>1.70E+02</u> | <u>7.50E-02</u> | <u>7.80E-06</u> | <u>3.24E-01</u> | <u>1.64E-01</u>      | <u>3.20E+02</u>             | <u>3.00E-03</u> | <u>9.60E+00</u> |
| <u>206-44-0</u>  | <u>Fluoranthene</u>                           | <u>2.06E-01</u> | <u>2.51E-02</u> | <u>6.35E-06</u> | <u>6.60E-04</u> | <u>a</u>             | <u>7.40E+04</u>             | <u>1.90E-04</u> | <u>1.23E-08</u> |
| <u>86-73-7</u>   | <u>Fluorene</u>                               | <u>2.00E+00</u> | <u>4.40E-02</u> | <u>7.88E-06</u> | 2.62E-03        | <u></u> <sup>3</sup> | 1.30E+04                    | <u>6.91E-04</u> | <u>6.30E-04</u> |
| <u>76-44-8</u>   | <u>Heptachlor</u>                             | <u>1.80E-01</u> | 2.23E-02        | <u>5.69E-06</u> | <u>6.07E-02</u> | <u>1.73E-02</u>      | 3.00E+03                    | <u>1.30E-01</u> | 4.00E-04        |
| <u>1024-57-3</u> | Heptachlor epoxide                            | <u>2.00E-01</u> | 2.19E-02        | <u>5.57E-06</u> | <u>3.90E-04</u> | a                    | 2.00E+05                    | 6.30E-04        | <u>1.90E-05</u> |

`

-

| <u>118-74-1</u>  | Hexachlorobenzene                        | <u>6.20E-03</u> | <u>5.42E-02</u> | <u>5.91E-06</u> | <u>5.33E-02</u> | <u>1.35E-02</u> | 2.00E+04                    | <u>1.70E-04</u> | 1.80E-05        |
|------------------|------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------------|-----------------|-----------------|
| <u>319-84-6</u>  | Alpha-HCH (alpha-BHC)                    | <u>2.00E+00</u> | <u>2.04E-02</u> | <u>5.04E-06</u> | <u>4.51E-04</u> | a               | <u>5.00E+03</u>             | 2.50E-03        | 4.50E-05        |
| <u>58-89-9</u>   | Gamma-HCH (Lindane)                      | <u>7.30E+00</u> | <u>2.75E-02</u> | <u>7.34E-06</u> | <u>5.74E-04</u> | a               | <u>3.00E+03</u>             | <u>2.90E-03</u> | <u>4.10E-04</u> |
| <u>2691-41-0</u> | High Melting Explosive.<br>Octogen (HMX) | <u>5.00E+00</u> | <u>2.69E-02</u> | <u>7.15E-06</u> | <u>8.67E-10</u> | <u>3.55E-08</u> | <u>1.40E+00</u>             | No Data         | <u>3.30E-14</u> |
| 77-47-4          | <u>Hexachlorocyclo-</u><br>pentadiene    | <u>1.80E+00</u> | <u>2.79E-02</u> | <u>7.21E-06</u> | <u>1.11E+00</u> | <u>4.22E-01</u> | <u>1.20E+04</u>             | 1.20E-02        | <u>5.96E-02</u> |
| <u>67-72-1</u>   | Hexachloroethane                         | 5.00E+01        | 2.50E-03        | 6.80E-06        | <u>1.59E-01</u> | <u>7.26E-02</u> | 1.50E+03                    | <u>1.92E-03</u> | 2.10E-01        |
| <u>193-39-5</u>  | Indeno(1.2.3-c.d)pyrene                  | 2.20E-05        | <u>2.25E-02</u> | <u>5.66E-06</u> | <u>6.56E-05</u> | <u> </u>        | <u>3.10E+06</u>             | <u>4.70E-04</u> | <u>1.00E-10</u> |
| <u>78-59-1</u>   | Isophorone                               | <u>1.20E+04</u> | <u>6.23E-02</u> | <u>6.76E-06</u> | <u>2.72E-04</u> | <u>1.12E-04</u> | 2.50E+01                    | <u>1.24E-02</u> | 4.38E-01        |
| <u>98-82-8</u>   | Isopropylbenzene<br>(Cumene)             | <u>6.10E+01</u> | <u>6.50E-02</u> | <u>7.10E-06</u> | 4.92E+01        | <u>2.10E+01</u> | <u>1.02E+03</u>             | <u>4.33E-02</u> | <u>4.50E+00</u> |
| <u>93-65-2</u>   | Mecoprop (MCPP)                          | <u>8.95E+02</u> | <u>2.40E-02</u> | <u>6.05E-06</u> | <u>7.70E-09</u> | a               | <u>1.84E+01<sup>d</sup></u> | <u>3.85E-03</u> | <u>2.44E-05</u> |
| <u>7439-97-6</u> | Mercury                                  | <u>6.00E-02</u> | <u>7.14E-02</u> | <u>3.01E-05</u> | <u>4.51E-01</u> | <u>1.59E-01</u> | <u>8.70E+03</u>             | No Data         | 2.00E-03        |
| <u>72-43-5</u>   | Methoxychlor                             | <u>4.50E-02</u> | <u>1.84E-02</u> | <u>4.46E-06</u> | <u>6.56E-04</u> | <u></u> a       | <u>5.00E+04</u>             | <u>1.90E-03</u> | <u>6.00E-07</u> |
| <u>74-83-9</u>   | Methyl Bromide                           | <u>1.50E+04</u> | <u>7.28E-02</u> | <u>1.21E-05</u> | <u>2.56E-01</u> | 1.79E-01        | <u>1.00E+01</u>             | <u>1.82E-02</u> | <u>1.62E+03</u> |
| <u>1634-04-4</u> | Methyl tertiary-butyl ether              | <u>5.10E+04</u> | 8.59E-02        | <u>1.10E-05</u> | 2.42E-02        | <u>1.50E-02</u> | <u>1.00E+01</u>             | No Data         | 2.50E+02        |
| <u>75-09-2</u>   | Methylene Chloride                       | <u>1.30E+04</u> | 1.01E-01        | <u>1.17E-05</u> | <u>9.02E-02</u> | <u>5.70E-02</u> | <u>1.30E+01</u>             | <u>1.20E-02</u> | 4.30E+02        |
| <u>93-65-2</u>   | 2-Methylnaphthalene                      | 2.50E+01        | <u>5.22E-02</u> | <u>7.75E-06</u> | <u>2.10E-02</u> | <u>6.95E-03</u> | <u>1.60E+03</u>             | <u>No Data</u>  | 6.80E-02        |
| <u>95-48-7</u>   | 2-Methylphenol (o-cresol)                | <u>2.60E+04</u> | <u>7.40E-02</u> | <u>8.30E-06</u> | <u>4.92E-05</u> | <u>2.00E-05</u> | <u>4.20E+01</u>             | <u>4.95E-02</u> | 2.99E-01        |
| <u>91-20-3</u>   | Naphthalene                              | <u>3.10E+01</u> | <u>5.90E-02</u> | <u>7.50E-06</u> | <u>1.97E-02</u> | <u>8.29E-03</u> | 5.00E+02                    | 2.70E-03        | <u>8.50E-02</u> |
| <u>98-95-3</u>   | Nitrobenzene                             | <u>2.09E+03</u> | <u>7.60E-02</u> | <u>8.60E-06</u> | <u>9.84E-04</u> | <u>3.99E-04</u> | 4.00E+01                    | <u>1.76E-03</u> | <u>2.40E-01</u> |
| <u>86-30-6</u>   | N-Nitrosodiphenylamine                   | <u>3.50E+01</u> | 2.83E-02        | <u>7.19E-06</u> | <u>2.10E-04</u> | <u>a</u>        | 1.00E+03                    | <u>1.00E-02</u> | <u>6.70E-04</u> |
| <u>621-64-7</u>  | N-Nitrosodi-n-propylamine                | <u>9.89E+03</u> | <u>5.87E-02</u> | <u>8.17E-06</u> | <u>9.20E-05</u> | <u>5.48E-05</u> | <u>1.45E+01</u>             | <u>1.90E-03</u> | <u>1.30E-01</u> |
| <u>87-86-5</u>   | Pentachlorophenol                        | <u>2.00E+03</u> | <u>5.60E-02</u> | <u>6.10E-06</u> | <u>9.84E-07</u> | <u>a</u>        | 2.77E+03 <sup>d</sup>       | <u>4.50E-04</u> | <u>3.20E-05</u> |
| <u>108-95-2</u>  | Phenol                                   | <u>8.30E+04</u> | <u>8.20E-02</u> | <u>9.10E-06</u> | <u>1.64E-05</u> | <u>6.67E-06</u> | <u>2.00E+01</u>             | <u>9.90E-02</u> | <u>2.80E-01</u> |
| <u>1918-02-1</u> | Picloram                                 | 4.30E+02        | <u>2.26E-02</u> | <u>5.64E-06</u> | <u>2.19E-12</u> | a               | <u>2.00E+00</u>             | No Data         | <u>7.21E-11</u> |
| 1336-36-3        | Polychlorinated biphenyls<br>(PCBs)      | <u>a</u>        | a               | a               | a               | <u>a</u>        | <sup>a</sup>                | a               | a               |

.

\*

| 129-00-0         | Pyrene                                                   | <u>1.40E+00</u> | <u>2.77E-02</u> | <u>7.24E-06</u> | <u>4.51E-04</u>  | <u></u> a       | 6.31E+04              | 1.80E-04        | <u>4.60E-06</u> |
|------------------|----------------------------------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------------|-----------------|-----------------|
| <u>121-82-4</u>  | <u>Royal Demolition</u><br>Explosive. Cyclonite<br>(RDX) | <u>5.97E+01</u> | <u>3.11E-02</u> | <u>8.49E-06</u> | <u>2.01E-11</u>  | <u></u> a       | 7.20E+00              | <u>No Data</u>  | <u>4.10E-09</u> |
| <u>122-34-9</u>  | Simazine                                                 | <u>6.20E+00</u> | 2.48E-02        | <u>6.28E-06</u> | <u>3.80E-08</u>  | a               | <u>1.32E+02</u>       | No Data         | 2.21E-08        |
| <u>100-42-5</u>  | Styrene                                                  | <u>3.10E+02</u> | <u>7.10E-02</u> | <u>8.00E-06</u> | <u>1.11E-01</u>  | <u>5.48E-03</u> | <u>3.16E+02</u>       | <u>3.30E-03</u> | <u>6.10E+00</u> |
| <u>93-72-1</u>   | <u>2.4.5-TP (Silvex)</u>                                 | <u>7.10E+01</u> | 2.30E-02        | <u>5.83E-06</u> | <u>3.711E-07</u> | <u></u> a       | 5.50E+03              | <u>No Data</u>  | <u>9.97E-06</u> |
| <u>127-18-4</u>  | Tetrachloroethylene                                      | <u>2.00E+02</u> | <u>7.20E-02</u> | <u>8.20E-06</u> | 7.38E-01         | <u>4.00E-01</u> | 6.31E+02              | 9.60E-04        | <u>1.90E+01</u> |
| <u>108-88-3</u>  | Toluene                                                  | <u>5.30E+02</u> | <u>8.70E-02</u> | <u>8.60E-06</u> | <u>2.71E-01</u>  | <u>1.49E-01</u> | <u>1.58E+02</u>       | <u>1.10E-02</u> | 2.80E+01        |
| 8001-35-2        | <u>Toxaphene</u>                                         | <u>7.40E-01</u> | <u>2.16E-02</u> | <u>5.51E-06</u> | <u>2.46E-04</u>  | <u></u> a       | <u>5.01E+04</u>       | <u>No Data</u>  | <u>9.80E-07</u> |
| <u>120-82-1</u>  | 1.2,4-Trichlorobenzene                                   | <u>3.50E+01</u> | <u>3.00E-02</u> | <u>8.23E-06</u> | <u>5.74E-02</u>  | 2.38E-02        | <u>1.58E+03</u>       | <u>1.90E-03</u> | 4.30E-01        |
| <u>71-55-6</u>   | 1.1.1-Trichloroethane                                    | <u>1.30E+03</u> | <u>7.80E-02</u> | <u>8.80E-06</u> | <u>6.97E-01</u>  | <u>4.21E-01</u> | <u>1.26E+02</u>       | <u>1.30E-03</u> | <u>1.20E+02</u> |
| <u>79-00-5</u>   | 1.1.2-Trichloroethane                                    | <u>4.40E+03</u> | <u>7.80E-02</u> | <u>8.80E-06</u> | <u>3.73E-02</u>  | 1.98E-02        | <u>5.01E+01</u>       | <u>9.50E-04</u> | 2.30E+01        |
| <u>79-01-6</u>   | <u>Trichloroethylene</u>                                 | <u>1.50E+03</u> | <u>7.90E-02</u> | <u>9.10E-06</u> | <u>4.10E-01</u>  | <u>2.41E-01</u> | 1.00E+02              | 4.20E-04        | <u>7.30E+01</u> |
| <u>75-69-4</u>   | <u>Trichlorofluoromethane</u>                            | <u>1.10E+03</u> | <u>8.70E-02</u> | <u>9.70E-06</u> | <u>3.98E+00</u>  | <u>2.69E+00</u> | <u>1.30E+02</u>       | <u>9.63E-04</u> | 8.00E+02        |
| <u>95-95-4</u>   | 2.4.5-Trichlorophenol                                    | <u>1.20E+03</u> | <u>2.91E-02</u> | <u>7.03E-06</u> | <u>1.78E-04</u>  | <u>a</u>        | 2.68E+03 <sup>d</sup> | <u>3.80E-04</u> | 2.40E-02        |
| <u>88-06-2</u>   | 2.4.6-Trichlorophenol                                    | <u>8.00E+02</u> | 2.61E-02        | <u>6.36E-06</u> | <u>3.53E-04</u>  | <u>a</u>        | 8.78E+02 <sup>d</sup> | <u>3.80E-04</u> | 2.00E-02        |
| <u>108-05-4</u>  | Vinyl Acetate                                            | <u>2.00E+04</u> | 8.50E-02        | <u>9.20E-06</u> | 2.09E-02         | <u>1.18E-02</u> | 4.57E+00              | No Data         | <u>9.00E+01</u> |
| <u>99-35-4</u>   | 1.3.5-Trinitrobenzene                                    | <u>2.80E+02</u> | <u>2.41E-02</u> | <u>6.08E-06</u> | <u>3.30E-10</u>  | <u></u> a       | <u>1.60E+01</u>       | <u>No Data</u>  | <u>6.40E-06</u> |
| <u>118-96-7</u>  | 2,4,6-Trinitrotoluene (TNT)                              | <u>1.24E+02</u> | <u>2.94E-02</u> | <u>7.90E-06</u> | <u>4.87E-09</u>  | <u></u> a       | <u>3.72E+01</u>       | <u>1.92E-03</u> | <u>2.02E-06</u> |
| <u>57-01-4</u>   | Vinyl Chloride                                           | <u>8.80E+03</u> | <u>1.06E-01</u> | <u>1.23E-06</u> | <u>1.11E+00</u>  | <u>8.14E-01</u> | <u>1.58E+01</u>       | <u>2.40E-04</u> | <u>3.00E+03</u> |
| <u>108-38-3</u>  | <u>m-Xylene</u>                                          | <u>1.60E+02</u> | <u>7.00E-02</u> | <u>7.80E-06</u> | <u>2.99E-01</u>  | <u>1.52E-01</u> | <u>3.98E+02</u>       | <u>1.90E-03</u> | <u>8.50E+00</u> |
| <u>95-47-6</u>   | o-Xylene                                                 | <u>1.80E+02</u> | <u>8.70E-02</u> | <u>1.00E-05</u> | <u>2.13E-01</u>  | <u>1.07E-01</u> | <u>3.16E+02</u>       | <u>1.90E-03</u> | <u>6.60E+00</u> |
| 106-42-3         | <u>p-Xylene</u>                                          | <u>1.60E+02</u> | <u>7.69E-02</u> | <u>8.44E-06</u> | <u>3.16E-01</u>  | <u>1.59E-01</u> | <u>3.16E+02</u>       | <u>1.90E-03</u> | <u>8.90E+00</u> |
| <u>1330-20-7</u> | Xylenes (total)                                          | <u>1.10E+02</u> | <u>7.35E-02</u> | <u>9.23E-06</u> | <u>2.71E-01</u>  | NA              | <u>3.98E+02</u>       | <u>1.90E-03</u> | 8.00E+00        |

<u>Chemical Abstracts Service (CAS) registry number. This number in the format xxx-xx-x, is</u> unique for each chemical and allows efficient searching on computerized databases. 

| 4162 | <u>a</u> | Soil remediation objectives are determined pursuant to 40 CFR 761, as incorporated by                     |
|------|----------|-----------------------------------------------------------------------------------------------------------|
| 4163 |          | reference at Section 742.210(b) (the USEPA "PCB Spill Cleanup Policy"), for most sites;                   |
| 4164 |          | persons remediating sites should consult with BOL if calculation of Tier 2 or 3 remediation               |
| 4165 |          | objectives is desired. PCBs are a mixture of different congeners. The appropriate values to               |
| 4166 |          | use for the physical/chemical parameters depend on congeners present at the site.                         |
| 4167 |          |                                                                                                           |
| 4168 | <u>b</u> | Dimensionless Henry's Law Constant at 13°C is not calculated because the chemical is not                  |
| 4169 |          | volatile and does not require evaluation under the indoor inhalation exposure route.                      |
| 4170 |          |                                                                                                           |
| 4171 | <u>C</u> | <u>Dimensionless Henry's Law Constant = 20°C</u>                                                          |
| 4172 |          |                                                                                                           |
| 4173 | <u>d</u> | These chemicals are ionizing and its $K_{oc}$ value will change with pH. The $K_{oc}$ values listed in    |
| 4174 |          | this table is the effective $K_{oc}$ at pH of 6.8. If the site-specific pH is a value other than 6.8, the |
| 4175 |          | $K_{oc}$ value listed Appendix C, Table I should be used.                                                 |
| 4176 |          |                                                                                                           |
| 4177 | e        | The values in this table were taken from the following sources (in order of preference):                  |
| 4178 |          | SCDMS online database (http://www.epa.gov/superfund/sites/npl/hrsres/tools/scdm.htm);                     |
| 4179 |          | CHEMFATE online database (http://www.srcinc.com/what-we-                                                  |
| 4180 |          | do/databaseforms.aspx?id=381); PhysProp online database (http://www.srcinc.com/what-we-                   |
| 4181 |          | do/databaseforms.aspx?id-386); Water (http://www.epa.gov/ttn/chief/software/water/) for                   |
| 4182 |          | diffusivity values; and Handbook of Environmental Degradation Rates by P.H. Howard (1991)                 |
| 4183 |          | for first order degradation constant values.                                                              |
| 4184 |          |                                                                                                           |
| 4185 |          |                                                                                                           |

| <del>CAS No.</del>    | Chemical             | Solubility<br>in Water<br>( <del>S)</del><br>(mg/L) | Diffusivity<br>in Air (Di)<br>(em <sup>²/</sup> s) | Diffusivity<br>in Water<br>(D <sub>w</sub> )<br>(em <sup>2</sup> /s) | Dimensionless<br>Henry's Law<br>Constant (H <sup>r</sup> )<br>(25°C) | Organic<br>Carbon<br>Partition<br>Coefficient<br>(K <sub>ee</sub> )<br>(L/kg) | First Order<br>Degradation<br>Constant $(\lambda)$<br>$(d^{-1})$ |
|-----------------------|----------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| <del>83-32-9</del>    | Acenaphthene         | 4 <del>.2</del> 4                                   | 0.0421                                             | <del>7.69E-6</del>                                                   | 0.00636                                                              | 7,080                                                                         | <del>0.003</del> 4                                               |
| 67-64-1               | Acetone              | 1,000,000                                           | <del>0.12</del> 4                                  | <del>1.14E-5</del>                                                   | <del>0.00159</del>                                                   | <del>0.575</del>                                                              | <del>0.0495</del>                                                |
| <del>15972-60-8</del> | Alachlor             | 242                                                 | 0.0198                                             | <del>5.69E-6</del>                                                   | 0.00000132                                                           | <del>39</del> 4                                                               | <del>No Data</del>                                               |
| <del>116-06-3</del>   | Aldicarb             | <del>6,000</del>                                    | <del>0.0305</del>                                  | <del>7.19E-6</del>                                                   | 0.0000000574                                                         | <del>12</del>                                                                 | 0.00109                                                          |
| <del>309-00-2</del>   | Aldrin               | <del>0.18</del>                                     | 0.0132                                             | 4.86E-6                                                              | <del>0.00697</del>                                                   | <del>2,450,000</del>                                                          | 0.00059                                                          |
| 120-12-7              | Anthracene           | <del>0.043</del> 4                                  | 0.0324                                             | 7.74E-6                                                              | 0.00267                                                              | <del>29,500</del>                                                             | 0.00075                                                          |
| <del>1912-24-9</del>  | Atrazine             | 70                                                  | 0.0258                                             | <del>6.69E-6</del>                                                   | 0.00000005                                                           | 451                                                                           | No Data                                                          |
| <del>71-43-2</del>    | Benzene              | <del>1,750</del>                                    | <del>0.088</del>                                   | 9.80E-6                                                              | 0.228                                                                | <del>58.9</del>                                                               | 0.0009                                                           |
| <del>56-55-3</del>    | Benzo(a)anthracene   | 0.0094                                              | 0.0510                                             | 9.00E-6                                                              | 0.000137                                                             | <del>398,000</del>                                                            | 0.00051                                                          |
| <del>205-99-2</del>   | Benzo(b)fluoranthene | <del>0.0015</del>                                   | 0.0226                                             | <del>5.56E-6</del>                                                   | 0.00455                                                              | <del>1,230,000</del>                                                          | 0.00057                                                          |

| <del>207-08-9</del>  | Benzo(k)fluoranthene       | 0.0008            | 0.0226             | <del>5.56E-6</del>  | 0.000034              | 1,230,000            | 0.00016             |
|----------------------|----------------------------|-------------------|--------------------|---------------------|-----------------------|----------------------|---------------------|
| <del>65-85-0</del>   | Benzoic Acid               | <del>3,500</del>  | 0.0536             | <del>7.97E-6</del>  | 0.0000631             | 0.600                | No Data             |
| 50-32-8              | Benzo(a)pyrene             | 0.00162           | 0.043              | 9.00E-6             | 0.0000463             | 1,020,000            | 0.00065             |
| 111-44-4             | Bis(2-chloroethyl)ether    | 17,200            | 0.0692             | 7.53E-6             | 0.000738              | 15.5                 | 0.0019              |
| 117-81-7             | Bis(2-ethylhexyl)phthalate | 0.34              | 0.0351             | <del>3.66E-6</del>  | 0.00000418            | 15,100,000           | 0.0018              |
| 75-27-4              | Bromodichloromethane       | 6,740             | 0.0298             | 1.06E-5             | 0.0656                | 55.0                 | <del>No Data</del>  |
| 75-25-2              | Bromoform                  | 3,100             | 0.0149             | 1.03E-5             | 0.0219                | 87.1                 | 0.0019              |
| 71-36-3              | Butanol                    | 74,000            | 0.0800             | <del>9.30E-6</del>  | 0.000361              | <del>6.92</del>      | 0.01283             |
| 85-68-7              | Butyl-Benzyl-Phthalate     | 2.69              | <del>0.017</del> 4 | 4.83E-6             | 0.0000517             | 57,500               | 0.00385             |
| 86-74-8              | Carbazole                  | 7.48              | 0.0390             | <del>7.03E-6</del>  | 0.000000626           | <del>3,390</del>     | No Data             |
| <del>1563-66-2</del> | Carbofuran                 | 320               | 0.0249             | <del>6.63E-6</del>  | .00377                | 37                   | No Data             |
| 75-15-0              | Carbon Disulfide           | 1,190             | 0.104              | <del>1.00E-5</del>  | 1.24                  | 45.7                 | <del>No Data</del>  |
| <del>56-23-5</del>   | Carbon Tetrachloride       | 793               | 0.0780             | 8.80E-6             | 1.25                  | 174                  | 0.0019              |
| <del>57-74-9</del>   | Chlordane                  | 0:056             | <del>0.0118</del>  | 4.37E-6             | 0.00199               | 120,000              | 0.00025             |
| <del>106-47-8</del>  | <del>p-Chloroaniline</del> | <del>5,300</del>  | <del>0.0483</del>  | <del>1.01E-5</del>  | 0.0000136             | <del>66.1</del>      | No-Data             |
| 108-90-7             | Chlorobenzene              | 472               | 0.0730             | <del>8.70E-6</del>  | 0.152                 | 219                  | 0.0023              |
| <del>124-48-1</del>  | Chlorodibromomethane       | 2,600             | <del>0.0196</del>  | <del>1.05E-5</del>  | 0.0321                | 63.1                 | <del>0.00385</del>  |
| 67-66-3              | Chloroform                 | 7,920             | 0.104              | <del>1.00E-5</del>  | 0.15                  | <del>39.8</del>      | 0.00039             |
| 95-57-8              | 2-Chlorophenol             | 22,000            | <del>0.0501</del>  | <del>9.46E-6</del>  | 0.016                 | <del>388</del>       | <del>No Data</del>  |
| <del>218-01-9</del>  | Chrysene                   | 0.0016            | <del>0.0248</del>  | <del>6.21E-6</del>  | 0.00388               | <del>398,000</del>   | 0.00035             |
| 94-75-7              | <del>2,4-D</del>           | <del>680</del>    | <del>0.0231</del>  | <del>7.31E-6</del>  | <del>0.00000041</del> | 4 <del>51</del>      | 0.00385             |
| <del>72-54-8</del>   | 4,4'-DDD                   | 0.09              | <del>0.0169</del>  | 4 <del>.76E-6</del> | 0.000164              | 1,000,000            | 0.000062            |
| 72-55-9              | 4,4'-DDE                   | 0.12              | 0.0144             | <del>5.87E-6</del>  | 0.000861              | 4,470,000            | 0.000062            |
| <del>50-29-3</del>   | 4,4'-DDT                   | 0.025             | <del>0.0137</del>  | 4 <del>.95E-6</del> | 0.000332              | <del>2,630,000</del> | 0.000062            |
| 75-99-0              | <del>Dalapon</del>         | 900,000           | 0.0414             | <del>9.46E-6</del>  | 0.00000264            | <del>5.8</del>       | 0.005775            |
| <del>53-70-3</del>   | Dibenzo(a,h)anthracene     | 0.00249           | 0.0202             | <del>5.18E-6</del>  | 0.000000603           | <del>3,800,000</del> | 0.00037             |
| <del>96-12-8</del>   | 1,2-Dibromo-3-             | 1,200             | 0.0212             | <del>7.02E-6</del>  | 0.00615               | <del>182</del>       | <del>0:001925</del> |
| <del>106-93-</del> 4 | 1,2-Dibromoethane          | 4 <del>,200</del> | 0.0287             | <del>8:06E-6</del>  | 0.0303                | <del>93</del>        | <del>0.005775</del> |
| <del>84-74-2</del>   | Di-n-butyl-Phthalate       | <del>11.2</del>   | 0.0438             | <del>7.86E-6</del>  | 0.000000385           | <del>33,900</del>    | <del>0.03013</del>  |
| <del>95-50-1</del>   | 1,2-Dichlorobenzene        | <del>156</del>    | 0.0690             | <del>7.90E-6</del>  | 0.0779                | 617                  | <del>0.0019</del>   |
| 106-46-7             | 1,4-Dichlorobenzene        | <del>73.8</del>   | 0.0690             | <del>7.90E-6</del>  | 0.0996                | 617                  | <del>0.0019</del>   |
| 91-94-1              | 3,3-Dichlorobenzidine      | 3.11              | 0.0194             | <del>6.74E-6</del>  | 0.000000164           | 724                  | <del>0.0019</del>   |
| <del>75-34-3</del>   | 1,1-Dichloroethane         | <del>5,060</del>  | 0.0742             | 1.05E-5             | 0.23                  | 31.6                 | 0.0019              |

.

| 107-06-2             | 1,2-Dichloroethane             | 8,520             | 0.104             | 9.90E-6             | 0.0401               | 17.4                 | 0.0019             |
|----------------------|--------------------------------|-------------------|-------------------|---------------------|----------------------|----------------------|--------------------|
| 75-35-4              | 1,1-Dichloroethylene           | 2,250             | 0.0900            | 1.04E-5             | 1.07                 | <del>58.9</del>      | 0.0053             |
| 156-59-2             | eis-1,2-Dichloroethylene       | 3,500             | 0.0736            | <del>1.13E-5</del>  | 0.167                | 35.5                 | 0.00024            |
| 156-60-5             | trans-1,2-Dichloroethylene     | 6,300             | 0.0707            | 1.19E-5             | 0.385                | 52.5                 | 0.00024            |
| 120-83-2             | 2,4-Dichlorophenol             | 4,500             | 0.0346            | 8.77E-6             | 0.00013              | 147                  | 0.00027            |
| 78-87-5              | 1,2-Dichloropropane            | 2,800             | 0.0782            | 8.73E-6             | 0.115                | 43.7                 | 0.00027            |
| 542-75-6             | 1.3-Dichloropropylene (cis     | 2,800             | 0.0626            | 1.00E-5             | 0.726                | 45.7                 | 0.061              |
| 60-57-1              | Dieldrin                       | 0.195             | 0.0125            | 4.74E-6             | 0.000619             | 21,400               | 0.00032            |
| 84-66-2              | Diethyl-Phthalate              | 1,080             | 0.0256            | 6.35E-6             | 0.0000185            | 288                  | 0.00619            |
| 105-67-9             | 2,4-Dimethylphenol             | 7,870             | 0.0584            | 8.69E-6             | 0.000082             | 209                  | 0.0495             |
| <del>51-28-5</del>   | 2,4-Dinitrophenol              | <del>2,790</del>  | 0.0273            | 9.06E-6             | 0.0000182            | 0.01                 | 0.00132            |
| 121-14-2             | 2,4-Dinitrotoluene             | 270               | 0.203             | 7.06E-6             | 0.0000038            | <del>95.5</del>      | 0.00192            |
| 606-20-2             | 2,6-Dinitrotoluene             | <del>182</del>    | 0.0327            | 7.26E-6             | 0.0000306            | <del>69.2</del>      | 0.00192            |
| <del>88-85-7</del>   | Dinoseb                        | <del>52</del>     | 0.0215            | 6.62E-6             | 0.0000189            | 1,120                | 0.002817           |
| <del>117-84-0</del>  | Di-n-octyl-Phthalate           | 0.02              | 0.0151            | 3.58E-6             | 0.00274              | 83,200,000           | 0.0019             |
| <del>115-29-7</del>  | Endosulfan                     | 0.51              | 0.0115            | 4.55E-6             | 0.000459             | 2,140                | 0.07629            |
| <del>145-73-3</del>  | Endothall                      | 21,000            | 0.0291            | 8.07E-6             | 0.0000000107         | 0.29                 | No Data            |
| 72-20-8              | Endrin                         | <del>0.25</del>   | 0.0125            | 4.74E-6             | 0.000308             | 12,300               | 0.00032            |
| <del>100-41-4</del>  | Ethylbenzene                   | <del>169</del>    | <del>0.0750</del> | <del>7.80E-6</del>  | 0.323                | 363                  | 0.003              |
| <del>206-44-0</del>  | Fluoranthene                   | 0.206             | 0.0302            | 6.35E-6             | 0.00066              | 107,000              | 0.00019            |
| <del>86-73-7</del>   | Fluorene                       | <del>1.98</del>   | <del>0.0363</del> | <del>7.88E-6</del>  | 0.00261              | 13,800               | 0.000691           |
| <del>76-44-8</del>   | Heptachlor                     | <del>0.18</del>   | <del>0:0112</del> | <del>5.69E-6</del>  | <del>60.7</del>      | <del>1,410,000</del> | <del>0.13</del>    |
| <del>1024-57-3</del> | Heptachlor epoxide             | <del>0.2</del>    | 0.0132            | 4.23E-6             | 0.00039              | <del>83,200</del>    | 0.00063            |
| <del>118-74-1</del>  | Hexachlorobenzene              | <del>6.2</del>    | 0.0542            | <del>5.91E-6</del>  | <del>0.0541</del>    | <del>55,000</del>    | 0.00017            |
| <del>319-84-6</del>  | alpha-HCH (alpha-BHC)          | <del>2.0</del>    | <del>0.0142</del> | <del>7.34E-6</del>  | <del>0.000435</del>  | 1,230                | <del>0.0025</del>  |
| <del>58-89-9</del>   | <del>gamma-HCH (Lindane)</del> | <del>6.8</del>    | 0.0142            | <del>7.34E-6</del>  | <del>0.00057</del> 4 | <del>1,070</del>     | <del>0.0029</del>  |
| 77-47-4              | Hexachlorocyclopentadiene      | <del>1.8</del>    | <del>0.0161</del> | <del>7.21E-6</del>  | 1.11                 | <del>200,000</del>   | <del>0.012</del>   |
| <del>67-72-1</del>   | Hexachloroethane               | <del>50</del>     | <del>0.0025</del> | <del>6.80E-6</del>  | <del>0.159</del>     | <del>1,780</del>     | <del>0.00192</del> |
| <del>193-39-5</del>  | Indeno(1,2,3-c,d)pyrene        | 0.000022          | <del>0.0190</del> | <del>5.66E-6</del>  | 0.0000656            | <del>3,470,000</del> | <del>0.00047</del> |
| <del>78-59-1</del>   | Isophorone                     | <del>12,000</del> | 0.0623            | <del>6.76E-6</del>  | 0.000272             | 4 <del>6.8</del>     | <del>0.01238</del> |
| <del>7439-97-6</del> | Mercury                        |                   | 0.0307            | 6.30E-6             | <del>0.467</del>     |                      | <del>No Data</del> |
| <del>72-43-5</del>   | Methoxychlor                   | 0.045             | 0.0156            | 4 <del>.46E-6</del> | <del>0.000648</del>  | <del>97,700</del>    | <del>0.0019</del>  |
| <del>74-83-9</del>   | Methyl Bromide                 | <del>15,200</del> | 0.0728            | <del>1.21E-5</del>  | <del>0.256</del>     | 10.5                 | 0.01824            |

| <del>1634-04-4</del> | Methyl tertiary-butyl ether | 51,000            | 0.102              | 1.10E-5              | 0.0241               | 11.5               | No Data            |
|----------------------|-----------------------------|-------------------|--------------------|----------------------|----------------------|--------------------|--------------------|
| <del>75-09-2</del>   | Methylene Chloride          | <del>13,000</del> | 0.101              | <del>1.17E-5</del>   | 0.0898               | 11.7               | 0.012              |
| 95-48-7              | 2-Methylphenol              | 26,000            | 0.0740             | 8.30E-6              | <del>0.0000492</del> | <del>91.2</del>    | 0.0495             |
| 91-20-3              | Naphthalene                 | 31.0              | 0.0590             | 7.50E-6              | 0.0198               | 2,000              | 0.0027             |
| 98-95-3              | Nitrobenzene                | <del>2,090</del>  | 0.0760             | 8.60E-6              | 0.000984             | 64.6               | 0.00176            |
| 86-30-6              | N-Nitrosodiphenylamine      | 35.1              | 0.0312             | 6.35E-6              | 0.000205             | 1,290              | 0.01               |
| 621-64-7             | N-Nitrosodi-n-propylamine   | 9:890             | 0.0545             | 8 <del>.17E-6</del>  | 0.0000923            | 24.0               | 0.0019             |
| 87-86-5              | Pentachlorophenol           | 1,950             | 0.0560             | 6 <del>.</del> 10E-6 | 0.000001             | <u>592</u>         | <del>0.00045</del> |
| 108-95-2             | Phenol                      | <del>82,800</del> | 0.0820             | 9.10E-6              | 0.0000163            | 28.8               | 0.099              |
| 1918-02-1            | Picloram                    | 430               | 0.0255             | <del>5.28E-6</del>   | 0.00000000166        | <del>1.98</del>    | No-Data            |
| <del>1336-36-3</del> | Polychlorinated biphenyls   | 0.7               | ŧ                  | a                    | <u> </u>             | <del>309,000</del> | No Data            |
| 129-00-0             | Pyrene                      | 0.135             | 0.0272             | <del>7.24E-6</del>   | 0.000451             | 105,000            | 0.00018            |
| <del>122-34-9</del>  | Simazine                    | 5                 | 0.027              | <del>7.36E-6</del>   | 0.0000000133         | <del>133</del>     | <del>No Data</del> |
| <del>100-42-5</del>  | Styrene                     | 3-1-0             | 0.0710             | 8:00E-6              | <del>0.113</del>     | <del>776</del>     | 0.0033             |
| <del>93-72-1</del>   | 2,4,5-TP (Silvex)           | 31                | <del>0.019</del> 4 | <del>5.83E-6</del>   | 0.0000000032         | <del>5,440</del>   | No-Data            |
| <del>127-18-</del> 4 | Tetrachloroethylene         | 200               | 0.0720             | <del>8.20E-6</del>   | <del>0.75</del> 4    | 155                | 0.00096            |
| <del>108-88-3</del>  | Toluene                     | <del>526</del>    | 0.0870             | 8.60E-6              | 0.272                | <del>182</del>     | 0.011              |
| <del>8001-35-2</del> | Toxaphene                   | <del>0.7</del> 4  | 0.0116             | 4 <del>.34E-6</del>  | <del>0.000246</del>  | 257,000            | No-Data            |
| <del>120-82-1</del>  | 1,2,4-Trichlorobenzene      | <del>300</del>    | 0.0300             | <del>8.23E-6</del>   | <del>0.0582</del>    | <del>1,780</del>   | 0.0019             |
| <del>71-55-6</del>   | 1,1,1-Trichloroethane       | <del>1,330</del>  | 0.0780             | 8:80E-6              | <del>0.705</del>     | <del>110</del>     | 0.0013             |
| <del>79-00-5</del>   | 1,1,2-Trichloroethane       | 4,420             | 0:0780             | <del>8.80E-6</del>   | <del>0.0374</del>    | <del>50.1</del>    | <del>0.00095</del> |
| <del>79-01-6</del>   | Trichloroethylene           | 1,100             | <del>0.0790</del>  | <del>9.10E-6</del>   | <del>0.422</del>     | <del>166</del>     | 0.00042            |
| <del>95-95-</del> 4  | 2,4,5-Trichlorophenol       | 1,200             | <del>0.0291</del>  | <del>7.03E-6</del>   | 0.000178             | <del>1,600</del>   | 0.00038            |
| <del>88-06-2</del>   | 2,4,6-Trichlorophenol       | 800               | 0.0318             | 6.25E-6              | <del>0.000319</del>  | <del>381</del>     | 0.00038            |
| 108-05-4             | Vinyl-Acetate               | 20,000            | 0.0850             | <del>9.20E-6</del>   | 0.021                | <del>5.25</del>    | No Data            |
| 57-01-4              | Vinyl-Chloride              | <del>2,760</del>  | 0.106              | <del>1.23E-6</del>   | <del>1.11</del>      | <del>18.6</del>    | 0.00024            |
| <del>108-38-3</del>  | m-Xylene                    | <del>161</del>    | 0.070              | <del>7.80E-6</del>   | <del>0.301</del>     | 407                | <del>0.0019</del>  |
| <del>95-47-6</del>   | o-Xylene                    | <del>178</del>    | 0.087              | <del>1.00E-5</del>   | 0.213                | <del>363</del>     | <del>0.0019</del>  |
| <del>106-42-3</del>  | p-Xylene                    | <del>185</del>    | 0.0769             | <del>8.44E-6</del>   | 0.314                | <del>389</del>     | <del>0.0019</del>  |
| 1330-20-7            | Xylenes (total)             | <del>186</del>    | 0.0720             | <del>9.34E-6</del>   | 0.25                 | <del>260</del>     | <del>0.0019</del>  |

4186

~

Chemical Abstracts Service (CAS) registry number. This number in the format xxx-xx-x, is unique for each chemical and allows efficient searching on computerized data bases. 4187

4188

| <sup>a</sup> Soil Remediation objectives are determined pursuant to 40 CFR 761, as incorporated by |
|----------------------------------------------------------------------------------------------------|
| reference at Section 732.104 (the USEPA "PCB Spill Cleanup Policy"), for most sites; persons       |
| remediating sites should consult with BOL if calculation of Tier 2 soil remediation objectives     |
| is desired.                                                                                        |
|                                                                                                    |
| (Source: Amended at 36 Ill. Reg, effective)                                                        |
|                                                                                                    |

.

`

### 4196 Section 742.APPENDIX C Tier 2 Illustrations and Tables

4197

4198 4199

## Section 742.TABLE F Methods for Determining Physical Soil Parameters

| Methods for Determining Physical Soil Parameters         |                                       |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|----------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Parameter                                                | Sampling Location <sup>a</sup>        | Method                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| $\rho_b$ (soil bulk density)                             | Surface                               | ASTM-D 1556-90<br>Sand Cone Method <sup>b</sup><br>ASTM-D 2167-94<br>Rubber Balloon Method <sup>b</sup><br>ASTM-D 2922-91<br>Nuclear Method <sup>b</sup>                                                                                                                                                                                              |  |  |  |  |  |
|                                                          | Subsurface                            | ASTM-D 2937-94<br>Drive Cylinder Method <sup>b</sup>                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| $\rho_s$ (soil particle density)                         | Surface or Subsurface                 | ASTM-D 854-92<br>Specific Gravity of Soil <sup>b</sup>                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| w (moisture content) Surface or Subsurface               |                                       | ASTM-D 4959-89 (Reapproved 1994)<br>Standard <sup>b</sup><br>ASTM-D D 4643-93<br>Microwave Oven <sup>b</sup><br>ASTM-D D2216-92<br>Laboratory Determination <sup>b</sup><br>ASTM-D D3017-88 (Reapproved 1993)<br>Nuclear Method <sup>b</sup><br>Equivalent USEPA Method (e.g., sample<br>preparation procedures described in<br>methods 3541 or 3550) |  |  |  |  |  |
| $f_{oc}$ (fraction organic carbon content)               | Surface or Subsurface                 | ASTM-D 2974-00<br>Moisture, Ash, and Organic Matter <sup>b</sup><br>appropriately adjusted to estimate the<br>fraction of organic carbon as stated in<br>Nelson and Sommers (1982) <sup>b</sup>                                                                                                                                                       |  |  |  |  |  |
| η or $\Theta_{T}$ (total soil porosity)                  | Surface or Subsurface<br>(calculated) | Equation S24 in Appendix C, Table A for<br>SSL Model, or Equation R23 in Appendix<br>C, Table C for RBCA Model <u>, or Equation</u><br>J&E 16 in Appendix C, Table L for J&E<br>Model                                                                                                                                                                 |  |  |  |  |  |
| $\Theta_{a}$ or $\Theta_{as}$ (air-filled soil porosity) | Surface or Subsurface<br>(calculated) | Equation S21 in Appendix C, Table A for<br>SSL Model, or Equation R21 in Appendix<br>C, Table C for RBCA Model <u>, or Equation</u><br>J&E 18 in Appendix C, Table L for J&E<br>Model                                                                                                                                                                 |  |  |  |  |  |

| $\Theta_{w}$ or $\Theta_{ws}$ (water-filled soil porosity) | Surface or Subsurface<br>(calculated) | Equation S20 in Appendix C, Table A for<br>SSL Model, or Equation R22 in Appendix<br>C, Table C for RBCA Model <u>, or Equation</u><br>J&E 17 in Appendix C, Table L for J&E<br>Model |
|------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K (hvdraulic conductivity)                                 | Surface or Subsurface                 | ASTM-D 5084-90<br>Flexible Wall Permeameter <sup>b</sup>                                                                                                                              |
|                                                            |                                       | Pump Test                                                                                                                                                                             |
|                                                            |                                       | Slug Test                                                                                                                                                                             |
| i (hydraulic gradient)                                     | Surface or Subsurface                 | Field Measurement                                                                                                                                                                     |

4200 4201

ъ.

<sup>a</sup> This is the location where the sample is collected
 <sup>b</sup> As incorporated by reference in Section 742.120.

4202

4203 4204

(Source: Amended at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)
## 4205 Section 742.APPENDIX C Tier 2 Tables

4206

.

4207 4208

# Section 742. TABLE L J&E Equations

| Indoor air<br>remediation<br>objectives<br>(mg/m <sup>3</sup> )                          | For carcinogenic<br>contaminants              | $RO_{indoorair} = \frac{TR \times AT_c \times 365 \frac{days}{yr}}{ED \times EF \times URF \times 1000 \frac{\mu g}{mg}}$                                                 | <u>J&amp;E1</u> |
|------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                          | <u>For</u><br>noncarcinogenic<br>contaminants | $\frac{RO_{indoorair}}{ED \times EF} = \frac{THQ \times AT_{nc} \times 365 \frac{days}{yr} \times RFC}{ED \times EF}$                                                     | <u>J&amp;E2</u> |
| <u>To convert</u><br>mg/m <sup>3</sup> from<br>parts per<br>million<br>volume            |                                               | $\underline{mg / m^{3} = \frac{ppmv \times MW}{24.45}}$ <u>Note: 24.45 equals the molar volume of air in liters at normal temperature (25°C) and pressure (760 mmHg).</u> | <u>J&amp;E3</u> |
| Soil gas<br>remediation<br>objective<br>(mg/m <sup>3</sup> )                             |                                               | $\frac{RO_{soi \mid g as}}{\alpha} = \frac{RO_{indoor - air}}{\alpha}$                                                                                                    | <u>J&amp;E4</u> |
| <u>Soil Vapor</u><br><u>Saturation</u><br><u>Limit</u><br>( <u>mg/m<sup>3</sup>-air)</u> |                                               | $\frac{C_{v}^{sat} = \frac{P \times MW}{R \times T} \times 10^{6}}{10^{6}}$                                                                                               | <u>J&amp;E5</u> |
| Groundwater<br>remediation<br>objectives                                                 |                                               | $RO_{gw} = \frac{RO_{soilg as}}{H'ts \times 1000 \frac{L_3}{m}}$                                                                                                          | <u>J&amp;E6</u> |

#### 4211 Section 742. APPENDIX C Tier 2 Tables

4212

# 4213

## Section 742.TABLE M J&E Parameters

| 7417 | 4 | 2 | 1 | 4 |
|------|---|---|---|---|
|------|---|---|---|---|

| Symbol                                            | Parameter                                                     | <u>Units</u>                             | Source                                                              | Tier 1 or Calculated Value                                                                                       |
|---------------------------------------------------|---------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <u>A</u> <sub>B</sub>                             | Surface area of<br>enclosed space at<br>or below grade        | <u>cm<sup>2</sup></u>                    | Equation J&E 12a or 12b.<br>Appendix C. Table L                     | $\frac{\text{Residential} = 1 \times 10^{6}}{\text{Industrial/Commercial} = 4.0}$ $\frac{\times 10^{6}}{10^{6}}$ |
| Acrack                                            | <u>Area of total</u><br><u>cracks</u>                         | <u>cm<sup>2</sup></u>                    | Equation J&E 14,<br>Appendix C. Table L                             | Calculated Value                                                                                                 |
| <u>AT</u> <sub>c</sub>                            | Averaging time<br>for carcinogens                             | year                                     | <u>SSL, May 1996</u>                                                | <u>70</u>                                                                                                        |
| <u>AT<sub>nc</sub></u>                            | <u>Averaging time</u><br><u>for</u><br><u>noncarcinogens</u>  | <u>year</u>                              | $\underline{AT_{nc}} = \underline{ED}$                              | <u>Residential = 30</u><br><u>Industrial/Commercial = 25</u>                                                     |
| $\underline{C}_{\underline{v}}^{\underline{sat}}$ | <u>Soil vapor</u><br><u>saturation limit</u>                  | mg/m <sup>3</sup> -air                   | Equation J&E 5, Appendix<br>C, Table L                              | <u>Chemical-Specific or</u><br><u>Calculated Value</u>                                                           |
| <u>D<sub>crack</sub>eff</u>                       | Effective diffusion<br>coefficient<br>through the cracks      | $cm^{2/s}$                               | Equation J&E 15,<br>Appendix C, Table L                             | Calculated Value                                                                                                 |
| Di                                                | Diffusivity in air                                            | $cm^2/s$                                 | Appendix C, Table E                                                 | Chemical-Specific                                                                                                |
| <u>D</u> i <sup>eff</sup>                         | Effective diffusion<br>coefficient for<br>each soil layer     | $\underline{\mathrm{cm}^{2}/\mathrm{s}}$ | Equation J&E 11,<br>Appendix C, Table L                             | Calculated Value                                                                                                 |
| <u>D</u> <sub>source</sub>                        | Distance from<br>ground surface to<br>top of<br>contamination | <u>cm</u>                                | Field Measurement                                                   | Soil Contamination = 152.4<br>Groundwater Contamination<br>= 304.8 Site-Specific                                 |
| <u>D</u> <sub>T</sub> <sup>eff</sup>              | Total overall<br>effective diffusion<br>coefficient           | $cm^{2}/s$                               | Equation J&E 9a, Appendix<br>C, Table L                             | Calculated Value                                                                                                 |
| <u>D</u> <sub>w</sub>                             | <u>Diffusivity in</u><br><u>water</u>                         | $cm^2/s$                                 | <u>Appendix C, Table E</u>                                          | Chemical-Specific                                                                                                |
| ED                                                | Exposure duration                                             | <u>year</u>                              | Residential: SSL, May<br>1996<br>Industrial/Commercial:<br>SSL 2002 | <u>Residential = 30</u><br><u>Industrial/Commercial = 25</u>                                                     |
| EF                                                | Exposure<br>frequency                                         | day/year                                 | Residential: SSL, May<br>1996<br>Industrial/Commercial:<br>SSL 2002 | <u>Residential = 350 Industrial/</u><br><u>Commercial = 250</u>                                                  |
| ER                                                | Air exchange rate                                             | exchanges<br>per hour                    | Illinois EPA                                                        | Residential = 0.53 Industrial/<br>Commercial = 0.93                                                              |

| Attenuation<br>factor                                                                                                                                                                                                     | Attenuation<br>factor when the<br>mode of<br>contaminant<br>transport is both<br>diffusion and<br>advection<br>$Q_{soil} = 83.33$<br>cm <sup>3</sup> /sec | $\alpha = \frac{\left[\left(\frac{D_T^{eff} \times A_B}{Q_{bldg} \times L_T}\right) \times \exp\left(\frac{Q_{soil} \times L_{crack}}{D_{crack}^{eff} \times A_{crack}}\right)\right]}{\left[\exp\left(\frac{Q_{soil} \times L_{crack}}{D_{crack}^{eff} \times A_{crack}}\right) + \left(\frac{D_T^{eff} \times A_B}{Q_{bldg} \times L_T}\right) + \left(\frac{D_T^{eff} \times A_B}{Q_{soil} \times L_T}\right)\left[\exp\left(\frac{Q_{soil} \times L_{crack}}{D_{crack}^{eff} \times L_{crack}}\right)\right]}\right]}$ | <u>J&amp;E7</u>   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                           | Attenuationfactor when themode ofcontaminanttransport isdiffusion only $Q_{soil} = 0 \text{ cm}^3/\text{sec}$                                             | $a = \frac{\left(D^{eff_T} \times A_B\right)}{1 + \left(\frac{D^{eff_T} \times A_B}{Q_{bldg} \times L_T}\right) + \left(\frac{D^{eff_T} \times A_B \times L_{crack}}{L_T \times D^{eff_{crack}} \times A_{crack}}\right)}$                                                                                                                                                                                                                                                                                                 | <u>J&amp;E8</u>   |
| <u>Total overall</u><br><u>effective</u><br><u>diffusion</u><br><u>coefficient</u><br><u>for vapor</u><br><u>transport in</u><br><u>porous media</u><br><u>for multiple</u><br><u>soil layers</u><br>(cm <sup>2</sup> /s) |                                                                                                                                                           | $D^{eff_T} = \frac{L_T}{\sum_{i=1}^n L_i ID^{\frac{eff}{i}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>J&amp;E9a</u>  |
|                                                                                                                                                                                                                           | In Equation<br>J&E9a, the<br>following<br>condition <b>must</b><br>be satisfied:                                                                          | $\sum_{i=1}^{n} L_i = L_T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>J&amp;E9b</u>  |
| <u>Source to</u><br><u>building</u><br><u>separation</u><br>(cm)                                                                                                                                                          |                                                                                                                                                           | $\underline{L_T = D_{source} - L_F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>J&amp;E10</u>  |
| Effective<br>diffusion<br>coefficient<br>for each soil<br>layer (cm <sup>2</sup> /s)                                                                                                                                      |                                                                                                                                                           | $D_{i^{eff}} = \left(\frac{\Theta^{3.33_{a,i}}}{\Theta^{2_{T,i}}}\right) + \left(\frac{D_{w}}{H_{TS}}\right) \left(\frac{\Theta^{3.33_{wi}}}{\Theta^{2_{T,i}}}\right)$                                                                                                                                                                                                                                                                                                                                                     | <u>J&amp;E11</u>  |
| Surface area<br>of enclosed<br>space at or<br>below grade<br>(cm <sup>2</sup> )                                                                                                                                           | For a slab-on-<br>grade building                                                                                                                          | $\underline{A_B} = \left( L_B \times W_B \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>J&amp;E12a</u> |

| Surface area<br>of enclosed<br>space at or<br>below grade<br>(cm <sup>2</sup> )        | For a building<br>with a basement | $\underline{A}_{B} = (L_{B} \times W_{B}) + (2 \times L_{F} \times L_{B}) + (2 \times L_{F} \times W_{B})$                                                                                    | <u>J&amp;E12b</u> |
|----------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Building<br>ventilation<br>rate (cm <sup>3</sup> /s)                                   |                                   | $Q_{bldg} = \frac{L_B \times W_B \times H_B \times ER}{3600 \operatorname{sec}/hr}$                                                                                                           | <u>J&amp;E13</u>  |
| <u>Area of total</u><br>cracks (cm <sup>2</sup> )                                      |                                   | $\underline{A_{crack}} = 2 \times (L_B + W_B) \times w$                                                                                                                                       | <u>J&amp;E14</u>  |
| Effective<br>diffusion<br>coefficient<br>through the<br>cracks<br>(cm <sup>2</sup> /s) |                                   | $D^{eff_{crack}} = D_i \left(\frac{\Theta^{3.33_{a.crack}}}{\Theta^{2_{T.crack}}}\right) + \left(\frac{D_w}{H_{TS}}\right) \left(\frac{\Theta^{3.33_{w.crack}}}{\Theta^{2_{T.crack}}}\right)$ | <u>J&amp;E15</u>  |
| Total porosity                                                                         |                                   | $\Theta_{Ti} = 1 - \frac{\rho_{bi}}{\rho_s}$                                                                                                                                                  | <u>J&amp;E16</u>  |
| <u>Water-filled</u><br>soil porosity                                                   |                                   | $\Theta_{w} = W \times \frac{\rho_{b}}{\rho_{w}}$                                                                                                                                             | <u>J&amp;E17</u>  |
| <u>Air-filled soil</u><br>porosity                                                     |                                   | $\underline{\Theta_a = \Theta_T - \Theta_w}$                                                                                                                                                  | <u>J&amp;E18</u>  |

4209 4210 Ŀ

e

(Source: Added at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

|                              | Exection exercit                                                                                                                                                                                                                                                                                              |                                           | SSL, May 1996, or Field                                         | [                                                                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u><u>f</u><sub>oc</sub></u> | carbon content                                                                                                                                                                                                                                                                                                | g/g                                       | Measurement                                                     | 0.002 or Site-Specific                                                                                                                                                                        |
|                              |                                                                                                                                                                                                                                                                                                               |                                           | Appendix C, Table F                                             |                                                                                                                                                                                               |
| <u>H</u> B                   | Height of building                                                                                                                                                                                                                                                                                            | <u>cm</u>                                 | <u>Illinois EPA</u>                                             | Slab-on-Grade Residential =<br>244 Industrial/ Commercial<br>= 305 or Site-Specific in<br>Tier 3 Basement Residential<br>= 427 Industrial/<br>Commercial = 488 or Site-<br>Specific in Tier 3 |
| <u>H'<sub>15</sub></u>       | Dimensionless<br>Henry's law<br>constant at the<br>system (soil)<br>temperature 13°C                                                                                                                                                                                                                          | <u>unitless</u>                           | <u>Appendix C. Table E</u>                                      | Chemical-Specific                                                                                                                                                                             |
| <u>L</u> <sub>B</sub>        | Length of building                                                                                                                                                                                                                                                                                            | <u>cm</u>                                 | <u>Illinois EPA</u>                                             | $\frac{\text{Residential} = 1000}{\text{Industrial/Commercial} =}$ $\frac{2000 \text{ or Site-Specific in Tier}}{3}$                                                                          |
| L <sub>crack</sub>           | Slab thickness                                                                                                                                                                                                                                                                                                | <u>cm</u>                                 | USEPA, Users Guide, 2004                                        | <u>10</u>                                                                                                                                                                                     |
| L <sub>E</sub>               | Distance from<br>ground surface to<br>bottom of slab                                                                                                                                                                                                                                                          | <u>cm</u>                                 | USEPA, Users Guide, 2004                                        | 10 (slab on grade) 200<br>(basement)                                                                                                                                                          |
| <u>L</u> i                   | <u>Thickness of soil</u><br><u>layer i</u>                                                                                                                                                                                                                                                                    | <u>cm</u>                                 | Field Measurement for<br>Capillary Fringe, USEPA,<br>2004       | Site-Specific<br>For Capillary Fringe, 37.5<br>cm                                                                                                                                             |
| <u>L</u> <sub>T</sub>        | Distance from<br>bottom of slab to<br>top of<br>contamination                                                                                                                                                                                                                                                 | <u>cm</u>                                 | Field Measurement or<br>Equation J&E 10,<br>Appendix C, Table L | 142.4 or Site-Specific                                                                                                                                                                        |
| MW                           | Molecular weight                                                                                                                                                                                                                                                                                              | g/mole                                    | Illinois EPA                                                    | Chemical-Specific                                                                                                                                                                             |
| <u>n</u>                     | <u>Total number of</u><br><u>layers of different</u><br><u>types of soil</u><br><u>vapors migrate</u><br><u>through from</u><br><u>source to building</u><br>(if source is<br><u>groundwater</u> ,<br><u>include a capillary</u><br><u>fringe layer of</u><br><u>37.5 cm as one of</u><br><u>the layers</u> ) | <u>unitless</u>                           | Field Measurement                                               | Site-Specific                                                                                                                                                                                 |
| <u>P</u>                     | Vapor Pressure                                                                                                                                                                                                                                                                                                | atm                                       | <u>Appendix C, Table E</u>                                      | Chemical-Specific                                                                                                                                                                             |
| $Q_{\rm bldg}$               | Building<br>ventilation rate                                                                                                                                                                                                                                                                                  | $\frac{\text{cm}^{3}/\text{s}}{\text{s}}$ | Equation J&E 13,<br>Appendix C, Table L                         | $\frac{\text{Slab-on-Grade}}{\text{Residential} = 3.59 \times 10^4}$                                                                                                                          |

~

η.

| URF                                    | Unit risk factor                                     | $(\mu g/m^3)^{-1}$                            | Illinois EPA:<br>http://www.epa.state.il.us/la<br>nd/taco/toxicity-values.xls                                    | Toxicological- Specific                                                                                              |
|----------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| W                                      | Floor-wall seam<br>gap                               | <u>cm</u>                                     | USEPA, Users Guide, 2004                                                                                         | <u>0.1</u>                                                                                                           |
| W                                      | Moisture content                                     | g of water/g<br>of soil                       | Field Measurement,<br>Appendix C, Table F                                                                        | Site-Specific                                                                                                        |
| WB                                     | Width of building                                    | <u>cm</u>                                     | <u>Illinois EPA</u>                                                                                              | $\frac{\text{Residential} = 1000}{\text{Industrial/ Commercial} =}$ $\frac{2000}{\text{or Site-Specific in Tier 3}}$ |
| α                                      | Attenuation factor                                   | unitless                                      | Equations J&E 7 or 8,<br>Appendix C, Table L                                                                     | Site-Specific                                                                                                        |
| $\underline{\Theta}_a$                 | <u>Air-filled soil</u><br>porosity                   | $\underline{cm^{3}/cm^{3}}$                   | SSL, May 1996 or<br>Equation J&E 18,<br>Appendix C, Table L                                                      | 0.28 or Calculated Value                                                                                             |
| $\underline{\Theta}_{a, crack}$        | Air-filled porosity<br>for soil in cracks            | <u>cm<sup>3</sup>/cm<sup>3</sup></u>          | SSL, May 1996 or<br>Equation J&E 18,<br>Appendix C, Table L                                                      | <u>0.13</u>                                                                                                          |
| $\underline{\Theta}_{a,i}$             | <u>Air-filled porosity</u><br><u>of soil layer i</u> | $\frac{\text{cm}^3/\text{cm}^3}{\text{cm}^3}$ | SSL, May 1996 or<br>Equation J&E 18,<br>Appendix C, Table L                                                      | $\frac{0.13 \text{ or Calculated Value}}{\text{For capillary fringe, } \Theta_{a,i} = 0.1 \Theta_{T,i}}$             |
| <u> </u>                               | <u>Total porosity for</u><br>soil in cracks          | <u>cm<sup>3</sup>/cm<sup>3</sup></u>          | SSL, May 1996 or<br>Equation J&E 16,<br>Appendix C, Table L                                                      | 0.43                                                                                                                 |
| $\underline{\Theta}_{\underline{T},i}$ | <u>Total porosity of</u><br>soil layer i             | $cm^{3}/cm^{3}$                               | SSL, May 1996 or<br>Equation J&E 16,<br>Appendix C, Table L                                                      | 0.43 or Calculated Value                                                                                             |
| <u> </u>                               | Water-filled soil<br>porosity                        | cm <sup>3</sup> /cm <sup>3</sup>              | SSL, May 1996 or<br>Equation J&E 17,<br>Appendix C, Table L                                                      | 0.15 or Calculated Value                                                                                             |
| <u> </u>                               | Water-filled<br>porosity for soil in<br>cracks       | $\underline{\mathrm{cm}^{3}/\mathrm{cm}^{3}}$ | SSL, May 1996 or<br>Equation J&E 17,<br>Appendix C, Table L                                                      | <u>0.15</u>                                                                                                          |
| <u> </u>                               | <u>Water-filled</u><br>porosity of soil<br>layer i   | <u>cm<sup>3</sup>/cm<sup>3</sup></u>          | SSL, May 1996 or<br>Equation J&E 17,<br>Appendix C, Table L<br>For capillary fringe, US<br>EPA, Users Guide 2004 | $\frac{0.15 \text{ or Calculated Value}}{\text{For capillary fringe} = 0.375}$<br>or 0.9 $\theta_{\text{T,i}}$       |
| $\underline{\Theta}_{\underline{b}}$   | <u>Dry soil bulk</u><br><u>density</u>               | g/cm <sup>3</sup>                             | SSL, May 1996 or<br>Field Measurement,<br>Appendix C, Table F                                                    | 1.5 or Calculated Value                                                                                              |
| <u> </u>                               | Soil particle<br>density                             | g/cm <sup>3</sup>                             | <u>SSL, May 1996 or</u><br><u>Field Measurement,</u><br><u>Appendix C, Table F</u>                               | 2.65 or Calculated Value                                                                                             |
| $\underline{\Theta}_{w}$               | Density of water                                     | g/cm <sup>3</sup>                             | <u>Illinois EPA</u>                                                                                              | 1                                                                                                                    |

ς.

 4215

 4216

 (Source: Added at 36 Ill. Reg. \_\_\_\_\_, effective \_\_\_\_\_)

|                                |                                                                                               |                               |                                                                                              | $\frac{\text{Industrial/Commercial} =}{3.15 \times 10^{5}}$<br>or Site-Specific in Tier 3                                                                                                                    |
|--------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                               |                               |                                                                                              | $\frac{\text{Dasement}}{\text{Residential} = 6.28 \times 10^4}$ $\frac{\text{Industrial/Commercial} = 5.04 \times 10^5}{\text{or Site-Specific in Tier 3}}$                                                  |
|                                |                                                                                               |                               |                                                                                              | $\frac{\text{If } L_{T} \text{ is less than 5 feet (152)}}{\text{cm}}.$ $Q_{\text{soil}} \text{ equals 83.33.}$                                                                                              |
| Q <sub>soil</sub>              | Volumetric flow<br>rate of soil gas into                                                      | $cm^{3/s}$                    | <u>USEPA, Users Guide for</u><br><u>Evaluating Subsurface</u><br><u>Vapor Intrusion into</u> | <u>If L<sub>T</sub> is 5 feet (152 cm) or</u><br>greater, Q <sub>soil</sub> equals zero.                                                                                                                     |
|                                | the enclosed space                                                                            |                               | Buildings, 2004                                                                              | An input value of zero<br>requires an institutional<br>control. See Section<br>742.505(b) and (c).                                                                                                           |
| <u>R</u>                       | Ideal gas constant                                                                            | <u>atm-L/mol-</u><br><u>K</u> | USEPA, Users Guide, 2004                                                                     | <u>0.08206</u>                                                                                                                                                                                               |
| <u>RfC</u>                     | Reference<br>concentration                                                                    | μg/m <sup>3</sup>             | Illinois EPA:<br>http://www.epa.state.il.us/la<br>nd/taco/toxicity-values.xls                | Toxicological-Specific                                                                                                                                                                                       |
| <u>RO<sub>gw</sub></u>         | Groundwater<br>remediation<br>objective                                                       | <u>mg/L</u>                   | <u>Appendix B, Table E, or</u><br>Equation J&E 6, Appendix<br>C, Table L                     | <u>Chemical-Specific or</u><br><u>Calculated Value</u>                                                                                                                                                       |
| <u>RO<sub>indoor-air</sub></u> | Indoor air<br>remediation<br>objective                                                        | mg/m <sup>3</sup>             | Equations J&E 1 and 2,<br>Appendix C, Table L                                                | Calculated Value                                                                                                                                                                                             |
| <u>RO<sub>soilgas</sub></u>    | Soil gas<br>remediation<br>objective                                                          | mg/m <sup>3</sup>             | Equation J&E 4, Appendix<br>C, Table L                                                       | Calculated Value                                                                                                                                                                                             |
| <u>S</u>                       | Solubility in water                                                                           | <u>mg/L</u>                   | Appendix C, Table E                                                                          | Chemical-Specific                                                                                                                                                                                            |
| T                              | Temperature                                                                                   | <u>°K</u>                     | USEPA, Users Guide, 2004                                                                     | 286 (converted from 13°C)                                                                                                                                                                                    |
| <u>THQ</u>                     | <u>Target hazard</u><br><u>quotient for a</u><br><u>chemical</u>                              | <u>unitless</u>               | <u>SSL, May 1996</u>                                                                         | 1                                                                                                                                                                                                            |
| <u>TR</u>                      | Target risk or the<br>increased chanceofdevelopingcanceroveralifetimeduetoexposuretoachemical | <u>unitless</u>               | <u>SSL, May 1996</u>                                                                         | $\frac{\text{Residential} = 10^{-6} \text{ at the}}{\text{point of human exposure}}$ $\frac{\text{Industrial/Commercial} = 10^{-6}}{\text{at the point of human}}$ $\frac{\text{exposure}}{\text{exposure}}$ |

| 4217         | Section 742.APPENDIX F Environmental Land Use Control                                                |
|--------------|------------------------------------------------------------------------------------------------------|
| 4218         | PREPARED BY:                                                                                         |
| 4220         | Name:                                                                                                |
|              | Address:                                                                                             |
|              |                                                                                                      |
| 4221<br>4222 |                                                                                                      |
| 4223<br>4224 | RETURN TO:                                                                                           |
|              | Name:                                                                                                |
|              | Address:                                                                                             |
|              |                                                                                                      |
| 4225<br>4226 | THE ABOVE SPACE FOR RECORDER'S OFFICE                                                                |
| 4227 4228    | <b>Model Environmental Land Use Control</b>                                                          |
| 4229         | THIS ENVIRONMENTAL LAND USE CONTROL ("ELUC"), is made this                                           |
| 4020         | day of, 20 by, ("Property Owner") of the real property located at the common address ("Property").   |
| 4230<br>4231 | WHEREAS, 415 ILCS 5/58.17 and 35 Ill. Adm. Code 742 provide for the use of an                        |
| 4232<br>4233 | ELUC as an institutional control in order to impose land use limitations or requirements related     |
| 4234         | Remediation determination from the Illinois Environmental Protection Agency ("IEPA"). The            |
| 4235         | reason for an ELUC is to ensure protection of human health and the environment. The                  |
| 4236         | limitations and requirements contained herein are necessary in order to protect against exposure     |
| 4237         | to contaminated soil, or groundwater, or soil gasboth, that may be present on the property as a      |
| 4238         | result of [VARIABLE] activities. Under 35 Ill. Adm. Code 742, the use of risk-based, site-           |
| 4239         | specific remediation objectives may require the use of an ELUC on real property, and the ELUC        |
| 4240         | may apply to certain physical features (e.g., engineered barriers, <u>indoor inhalation building</u> |
| 4241<br>4747 | control technologies, monitoring wens, caps, etc.).                                                  |
| 147 <b>4</b> | WHEREAS, [the party performing remediation] intends to                                               |
|              | request risk-based, site specific soil, and groundwater, or soil gas remediation objectives from     |
|              | IEPA under 35 Ill. Adm. Code 742 to obtain risk-based closure of the site, identified by Bureau      |

of Land

`

.

| [10-digit LPC or Identification number] , utilizing an ELUC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOW, THEREFORE, the recitals set forth above are incorporated by reference as if fully set forth herein, and the Property Owner agrees as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date: By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Director                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Section One. Property Owner does hereby establish an ELUC on the real estate, situated in the County of, State of Illinois and further described in Exhibit A attached hereto and incorporated herein by reference (the "Property").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Attached as Exhibit B are site maps that show the legal boundary of the Property, any physical features to which the ELUC applies, the horizontal and vertical extent of the contaminants of concern above the applicable remediation objectives for soil <u>, or</u> groundwater <u>, or soil gasboth</u> , and the nature, location of the source, and direction of movement of the contaminants of concern, as required under 35 Ill. Adm. Code 742.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Section Two. Property Owner represents and warrants <b>he/she</b> is the current owner of the Property and has the authority to record this ELUC on the chain of title for the Property with the Office of the Recorder or Registrar of Titles in County, Illinois.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Section Three. The Property Owner hereby agrees, for himself/herself, and his/her<br>heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor<br>or user of the Property or the holder of any portion thereof or interest therein, that [INSERT<br>RESTRICTION (e.g., the groundwater under the Property shall not be used as a potable<br>supply of water, and any contaminated groundwater or soil that is removed, excavated, or<br>disturbed from the Property described in Exhibit A herein must be handled in accordance<br>with all applicable laws and regulations)].                                                                                                                                                                                                                                                                                       |
| Section Four. This ELUC is binding on the Property Owner, <b>his/her</b> heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor or user of the Property or the holder of any portion thereof or interest therein. This ELUC shall apply in perpetuity against the Property and shall not be released until the IEPA determines there is no longer a need for this ELUC as an institutional control; until the IEPA, upon written request, issues to the site that received the no further remediation determination a new no further remediation determination (s) or requirement(s); the new no further remediation determination is filed on the chain of title of the site subject to the no further remediation determination; and until a release or modification of the land use limitation or requirement is filed on the chain of title for the Property. |
| Section Five. Information regarding the remediation performed on the Property may be obtained from the IEPA through a request under the Freedom of Information Act [5 ILCS 140]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

.

| and rules promulgated thereunder by providing number listed above.                                | ng the IEPA with the 10-digit LPC or identification                        |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Section Six. The effective date of thi recorded in the chain of title for the Property            | is ELUC shall be the date that it is officially to which the ELUC applies. |
| WITNESS the following signatures:                                                                 |                                                                            |
| Property Owner(s)                                                                                 |                                                                            |
| Ву:                                                                                               |                                                                            |
| Its:                                                                                              |                                                                            |
| Date:                                                                                             |                                                                            |
|                                                                                                   |                                                                            |
| STATE OF ILLINOIS )                                                                               |                                                                            |
| COUNTY OF )                                                                                       |                                                                            |
| I,                                                                                                | the undersigned, a Notary Public for said Count                            |
| and State, DO HEREBY CERTIFY, that                                                                | and                                                                        |
| personally known to me to be the Property O                                                       | wher(s) of, an, an                                                         |
| instrument, appeared before me this day in personal capacities they signed and delivered the said | erson and severally acknowledged that in said                              |
| uses and purposes therein set forth.                                                              | instrument as then nee and voluntary act for the                           |
| Given under my hand and official seal, this                                                       | day of, 20                                                                 |
|                                                                                                   | Notary Public                                                              |
|                                                                                                   | Notary i ublic                                                             |
|                                                                                                   |                                                                            |
|                                                                                                   |                                                                            |
| STATE OF ILLINOIS )                                                                               |                                                                            |
|                                                                                                   |                                                                            |
| COUNTY OF )                                                                                       |                                                                            |

this day in person appeared \_\_\_\_\_\_, personally known to me to be the Property Owner(s) of \_\_\_\_\_\_\_, each severally acknowledged that they signed and delivered the foregoing instrument as the Property Owner(s) herein set forth, and as their own free and voluntary act, for the uses and purposes herein set forth.

4297

Given under my hand and official seal, this \_\_\_\_\_ day of \_\_\_\_\_\_, 20 \_\_\_\_,

Notary Public

| 4298 |                                                | PIN NO. XX | -XX-XXX-XXX-XXXX<br>(Parcel Index Number) |
|------|------------------------------------------------|------------|-------------------------------------------|
| 4299 | Exhibit A                                      |            |                                           |
| 4301 |                                                |            |                                           |
|      | The subject property is located in the City of | ,          | County, State of                          |
|      | Illinois, commonly known as                    | ,          | , Illinois                                |
|      | and more particularly described as:            |            |                                           |
| 4302 | LIST THE COMMON ADDRESS;                       |            |                                           |
| 4303 | LEGAL DESCRIPTION; AND                         |            |                                           |
| 4304 | REAL ESTATE TAX INDEX OR PARCEL #              |            |                                           |
| 4305 | (PURSUANT TO SECTION 742.1010(D)(2))           |            |                                           |
| 4306 |                                                |            |                                           |

|      |           | JCAR350742-1207340r01                                                            |
|------|-----------|----------------------------------------------------------------------------------|
| 4307 |           | PIN NO. XX-XX-XXX-XXX-XXXX                                                       |
| 4308 |           |                                                                                  |
| 4309 |           | Exhibit B                                                                        |
| 4310 |           |                                                                                  |
| 4311 | IN ACCORE | DANCE WITH SECTION 742.1010( $d\overline{D}$ )(8)(A)-(D), PROVIDE ALL THE        |
| 4312 | FOLLOWIN  | <u>G ELEMENTS. ATTACH SEPARATE SHEETS, LABELED AS EXHIBIT B,</u>                 |
| 4313 | WHERE NE  | <u>CESSARY.</u>                                                                  |
| 4314 |           |                                                                                  |
| 4315 | (A)       | A scaled map showing the legal boundary of the property to which the ELUC        |
| 4316 |           | applies.                                                                         |
| 4317 |           |                                                                                  |
| 4318 | (B)       | Scaled maps showing the horizontal and vertical extent of contaminants of        |
| 4319 |           | concern above the applicable remediation objectives for soil, and groundwater,   |
| 4320 |           | and soil gas to which the ELUC applies.                                          |
| 4321 |           |                                                                                  |
| 4322 | (C)       | Scaled maps showing the physical features to which an ELUC applies (e.g.,        |
| 4323 |           | engineered barriers, indoor inhalation building control technologies, monitoring |
| 4324 |           | wells, caps, etc.).                                                              |
| 4325 |           |                                                                                  |
| 4326 | (D)       | Scaled maps showing the nature, location of the source, and direction of         |
| 4327 |           | movement of the contaminants of concern.                                         |
| 4328 |           |                                                                                  |
| 4329 | (Sour     | ce: Amended at 36 Ill. Reg, effective)                                           |

¢.